Suppr超能文献

一种用于乳腺癌组织学特征联合预测的基于多参数磁共振成像的深度多任务学习框架。

A Framework for Deep Multitask Learning With Multiparametric Magnetic Resonance Imaging for the Joint Prediction of Histological Characteristics in Breast Cancer.

作者信息

Fan Ming, Yuan Chengcheng, Huang Guangyao, Xu Maosheng, Wang Shiwei, Gao Xin, Li Lihua

出版信息

IEEE J Biomed Health Inform. 2022 Aug;26(8):3884-3895. doi: 10.1109/JBHI.2022.3179014. Epub 2022 Aug 11.

Abstract

The clinical management and decision-making process related to breast cancer are based on multiple histological indicators. This study aims to jointly predict the Ki-67 expression level, luminal A subtype and histological grade molecular biomarkers using a new deep multitask learning method with multiparametric magnetic resonance imaging. A multitask learning network structure was proposed by introducing a common-task layer and task-specific layers to learn the high-level features that are common to all tasks and related to a specific task, respectively. A network pretrained with knowledge from the ImageNet dataset was used and fine-tuned with MRI data. Information from multiparametric MR images was fused using the strategy at the feature and decision levels. The area under the receiver operating characteristic curve (AUC) was used to measure model performance. For single-task learning using a single image series, the deep learning model generated AUCs of 0.752, 0.722, and 0.596 for the Ki-67, luminal A and histological grade prediction tasks, respectively. The performance was improved by freezing the first 5 convolutional layers, using 20% shared layers and fusing multiparametric series at the feature level, which achieved AUCs of 0.819, 0.799 and 0.747 for Ki-67, luminal A and histological grade prediction tasks, respectively. Our study showed advantages in jointly predicting correlated clinical biomarkers using a deep multitask learning framework with an appropriate number of fine-tuned convolutional layers by taking full advantage of common and complementary imaging features. Multiparametric image series-based multitask learning could be a promising approach for the multiple clinical indicator-based management of breast cancer.

摘要

与乳腺癌相关的临床管理和决策过程基于多种组织学指标。本研究旨在使用一种新的深度多任务学习方法结合多参数磁共振成像,联合预测Ki-67表达水平、腔面A型亚型和组织学分级分子生物标志物。通过引入一个公共任务层和特定任务层,提出了一种多任务学习网络结构,以分别学习所有任务共有的和与特定任务相关的高级特征。使用从ImageNet数据集获取知识进行预训练的网络,并使用MRI数据进行微调。多参数MR图像的信息在特征和决策层面使用该策略进行融合。使用受试者操作特征曲线(AUC)下的面积来衡量模型性能。对于使用单个图像序列的单任务学习,深度学习模型对Ki-67、腔面A型和组织学分级预测任务生成的AUC分别为0.752、0.722和0.596。通过冻结前5个卷积层、使用20%的共享层并在特征层面融合多参数序列,性能得到了提高,对于Ki-67、腔面A型和组织学分级预测任务,分别实现了0.819、0.799和0.747的AUC。我们的研究表明,通过充分利用共同和互补的成像特征,使用具有适当数量微调卷积层的深度多任务学习框架联合预测相关临床生物标志物具有优势。基于多参数图像序列的多任务学习可能是基于多种临床指标管理乳腺癌的一种有前途的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验