Suppr超能文献

NeoAI 1.0:基于机器学习的新生儿和婴儿死亡风险预测范式。

NeoAI 1.0: Machine learning-based paradigm for prediction of neonatal and infant risk of death.

机构信息

Dept. of Pediatrics/Division of Neonatology, Ann and Robert H. Lurie Children's Hospital of Chicago / Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

Bennett University, Noida, India.

出版信息

Comput Biol Med. 2022 Aug;147:105639. doi: 10.1016/j.compbiomed.2022.105639. Epub 2022 May 18.

Abstract

BACKGROUND

The Neonatal mortality rate in the United States is 3.8 deaths per 1000 live births, which is comparably higher than other nations.

PURPOSE

The aim of the proposed study is to design and develop Artificial Intelligence (AI) models (NeoAI 1.0, Global Biomedical Technologies, Inc., Roseville, CA, USA) on risk variables extracted from the National Center for Health Statistics (NCHS) data from 2014 to 2017 duration, consisting of birth-death infant files to predict neonatal and infant deaths.

METHODOLOGY

The NCHS data consisted of 15.8 million live birth records, including 91,773 infant deaths, out of which 61,222 were neonatal (life <28 days) and the rest were non-deaths. We designed and developed two different kinds of systems, labelled as neonatal and infant death systems. The data preparation consisted of balancing the two classes using the Adaptive Synthetic oversampling technique (ADASYN) paradigm. The best features were extracted using mutual information followed by 5-fold cross-validation using four different models, namely AdaBoost, XGBoost, Random Forest, and Logistic Regression based on balanced and unbalanced paradigms.

RESULTS

XGBoost gave the best results for the neonatal system with AUC of 0.97 and 0.99 (p < 0.0001), while for the infant system, the scores were 0.91 and 0.99, both systems, without/with ADASYN integration, respectively. Further, there was a 60% increase in F1-score and sensitivity with ADASYN integration. The most important risk factors for classifier models along with feature extraction were maternal age and maternal race by Hispanic classification. Further, gestational age, labour aid and newborn condition were also part of the top five risk factors for these models.

CONCLUSIONS

NoeAI showed two independent powerful machine learning (ML) systems and selected the best risk predictors combined with classification models for neonatal and infant deaths. The response time of the online platform was less than a second.

摘要

背景

美国的新生儿死亡率为每 1000 例活产中有 3.8 例死亡,这一数字与其他国家相比相对较高。

目的

本研究旨在设计和开发人工智能(AI)模型(NeoAI 1.0,Global Biomedical Technologies,Inc.,Roseville,CA,USA),该模型基于从 2014 年至 2017 年期间国家卫生统计中心(NCHS)数据中提取的风险变量,这些变量包含出生-死亡婴儿档案,用于预测新生儿和婴儿的死亡。

方法

NCHS 数据包含 1580 万例活产记录,其中包括 91773 例婴儿死亡,其中 61222 例为新生儿(生命<28 天),其余为非死亡。我们设计和开发了两种不同的系统,分别标记为新生儿和婴儿死亡系统。数据准备包括使用自适应合成过采样技术(ADASYN)范例平衡两类数据。使用互信息提取最佳特征,然后使用四种不同的模型(基于平衡和不平衡范例的 AdaBoost、XGBoost、随机森林和逻辑回归)进行 5 折交叉验证。

结果

XGBoost 为新生儿系统提供了最佳结果,AUC 为 0.97 和 0.99(p<0.0001),而对于婴儿系统,得分分别为 0.91 和 0.99,这两个系统分别在有无 ADASYN 集成的情况下。此外,ADASYN 集成后 F1 评分和敏感性提高了 60%。对于分类器模型以及特征提取最重要的风险因素是母亲年龄和母亲种族(按西班牙裔分类)。此外,胎龄、分娩辅助和新生儿状况也是这些模型的前五个风险因素之一。

结论

NoeAI 展示了两个独立强大的机器学习(ML)系统,并选择了最佳风险预测因子与分类模型相结合,用于预测新生儿和婴儿的死亡。在线平台的响应时间不到一秒。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验