Suppr超能文献

从结构连接组学预测大脑功能的黎曼方法。

A Riemannian approach to predicting brain function from the structural connectome.

机构信息

McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.

McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany.

出版信息

Neuroimage. 2022 Aug 15;257:119299. doi: 10.1016/j.neuroimage.2022.119299. Epub 2022 May 27.

Abstract

Ongoing brain function is largely determined by the underlying wiring of the brain, but the specific rules governing this relationship remain unknown. Emerging literature has suggested that functional interactions between brain regions emerge from the structural connections through mono- as well as polysynaptic mechanisms. Here, we propose a novel approach based on diffusion maps and Riemannian optimization to emulate this dynamic mechanism in the form of random walks on the structural connectome and predict functional interactions as a weighted combination of these random walks. Our proposed approach was evaluated in two different cohorts of healthy adults (Human Connectome Project, HCP; Microstructure-Informed Connectomics, MICs). Our approach outperformed existing approaches and showed that performance plateaus approximately around the third random walk. At macroscale, we found that the largest number of walks was required in nodes of the default mode and frontoparietal networks, underscoring an increasing relevance of polysynaptic communication mechanisms in transmodal cortical networks compared to primary and unimodal systems.

摘要

大脑的持续功能在很大程度上取决于大脑的基础连接,但支配这种关系的具体规则尚不清楚。新出现的文献表明,脑区之间的功能相互作用是通过单突触和多突触机制从结构连接中产生的。在这里,我们提出了一种基于扩散图和黎曼优化的新方法,以随机漫步的形式在结构连接组上模拟这种动态机制,并将功能相互作用预测为这些随机漫步的加权组合。我们提出的方法在两个不同的健康成年人队列(人类连接组计划(HCP);微观结构信息连通组学(MICs))中进行了评估。我们的方法优于现有方法,表明大约在第三次随机漫步时性能趋于平稳。在宏观尺度上,我们发现默认模式和额顶叶网络中的节点需要最多的漫步,这强调了与初级和单模态系统相比,多突触通讯机制在跨模态皮质网络中的重要性不断增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验