Suppr超能文献

并行多群协同粒子群优化算法在蛋白质-配体对接和虚拟筛选中的应用。

Parallel multi-swarm cooperative particle swarm optimization for protein-ligand docking and virtual screening.

机构信息

Department of Computer Science and Technology, Jiangnan University, No.1800, Lihu Avenue, Wuxi, Jiangsu, People's Republic of China.

Centre for Computational Science and Mathematical Modelling, Coventry University, Priory Street, Coventry, CV1 5FB, UK.

出版信息

BMC Bioinformatics. 2022 May 30;23(1):201. doi: 10.1186/s12859-022-04711-0.

Abstract

BACKGROUND

A high-quality docking method tends to yield multifold gains with half pains for the new drug development. Over the past few decades, great efforts have been made for the development of novel docking programs with great efficiency and intriguing accuracy. AutoDock Vina (Vina) is one of these achievements with improved speed and accuracy compared to AutoDock4. Since it was proposed, some of its variants, such as PSOVina and GWOVina, have also been developed. However, for all these docking programs, there is still large room for performance improvement.

RESULTS

In this work, we propose a parallel multi-swarm cooperative particle swarm model, in which one master swarm and several slave swarms mutually cooperate and co-evolve. Our experiments show that multi-swarm programs possess better docking robustness than PSOVina. Moreover, the multi-swarm program based on random drift PSO can achieve the best highest accuracy of protein-ligand docking, an outstanding enrichment effect for drug-like activate compounds, and the second best AUC screening accuracy among all the compared docking programs, but with less computation consumption than most of the other docking programs.

CONCLUSION

The proposed multi-swarm cooperative model is a novel algorithmic modeling suitable for protein-ligand docking and virtual screening. Owing to the existing coevolution between the master and the slave swarms, this model in parallel generates remarkable docking performance. The source code can be freely downloaded from https://github.com/li-jin-xing/MPSOVina .

摘要

背景

高质量的对接方法往往可以事半功倍,有助于新药开发。在过去的几十年中,人们为开发新型对接程序付出了巨大的努力,这些程序具有很高的效率和有趣的准确性。AutoDock Vina(Vina)是这些成果之一,与 AutoDock4 相比,它的速度和准确性都有所提高。自提出以来,还开发了一些变体,如 PSOVina 和 GWOVina。然而,对于所有这些对接程序,仍然有很大的性能改进空间。

结果

在这项工作中,我们提出了一种并行多群协同粒子群模型,其中一个主群和几个从群相互合作和共同进化。我们的实验表明,多群程序具有比 PSOVina 更好的对接稳健性。此外,基于随机漂移 PSO 的多群程序可以实现最佳的蛋白-配体对接最高准确性,对类药物激活化合物具有出色的富集效果,以及所有比较的对接程序中第二好的 AUC 筛选准确性,但计算消耗比大多数其他对接程序都要少。

结论

所提出的多群协同模型是一种适用于蛋白-配体对接和虚拟筛选的新型算法建模。由于主群和从群之间存在共同进化,这种模型在并行计算中产生了显著的对接性能。源代码可从 https://github.com/li-jin-xing/MPSOVina 自由下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7782/9150318/d0f4a09fd566/12859_2022_4711_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验