Ulmer W
Strahlenther Onkol. 1987 Feb;163(2):123-9.
The volume dependence of the linear quadratic survival function SLQ = exp (-(alpha D + beta D2)) and the cubic survival function Scub = exp (-(alpha D + beta D2 + delta D3)), which represent different stages of a useful approximation of the general dose-response relationship S = exp (-alpha 1D-alpha 2D2-alpha 3D3-......-alpha nDn (terms of higher order)), has been regarded with respect to the tolerance doses of skin, spinal cord and brain, and the corresponding isoeffects have been compared with the results of a modified Ellis-formula Dt = (NSD)Vo T0.11 N0.24 (V/Vo)-0.158. In a second part, some theoretical models on the volume effect and the empirical power relation of the field size have been investigated by a formulation of the multi target theory by the aid of correlation functions.
线性二次生存函数(S_{LQ} = exp (-(αD + βD^2)))和三次生存函数(S_{cub} = exp (-(αD + βD^2 + δD^3)))的体积依赖性,它们代表了一般剂量-反应关系(S = exp (-α_1D - α_2D^2 - α_3D^3 -...... - α_nD^n)(高阶项))有用近似的不同阶段,已针对皮肤、脊髓和脑的耐受剂量进行了研究,并且已将相应的等效效应与修正的埃利斯公式(D_t = (NSD)V_0T_0.11N_0.24(V/V_0)^{-0.158})的结果进行了比较。在第二部分中,借助相关函数对多靶理论进行了公式化,研究了一些关于体积效应和射野大小的经验幂关系的理论模型。