Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris 75015, France.
Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011 Santander, Spain.
Mol Biol Evol. 2022 Jun 2;39(6). doi: 10.1093/molbev/msac115.
Conjugation drives the horizontal transfer of adaptive traits across prokaryotes. One-fourth of the plasmids encode the functions necessary to conjugate autonomously, the others being eventually mobilizable by conjugation. To understand the evolution of plasmid mobility, we studied plasmid size, gene repertoires, and conjugation-related genes. Plasmid gene repertoires were found to vary rapidly in relation to the evolutionary rate of relaxases, for example, most pairs of plasmids with 95% identical relaxases have fewer than 50% of homologs. Among 249 recent transitions of mobility type, we observed a clear excess of plasmids losing the capacity to conjugate. These transitions are associated with even greater changes in gene repertoires, possibly mediated by transposable elements, including pseudogenization of the conjugation locus, exchange of replicases reducing the problem of incompatibility, and extensive loss of other genes. At the microevolutionary scale of plasmid taxonomy, transitions of mobility type sometimes result in the creation of novel taxonomic units. Interestingly, most transitions from conjugative to mobilizable plasmids seem to be lost in the long term. This suggests a source-sink dynamic, where conjugative plasmids generate nonconjugative plasmids that tend to be poorly adapted and are frequently lost. Still, in some cases, these relaxases seem to have evolved to become efficient at plasmid mobilization in trans, possibly by hijacking multiple conjugative systems. This resulted in specialized relaxases of mobilizable plasmids. In conclusion, the evolution of plasmid mobility is frequent, shapes the patterns of gene flow in bacteria, the dynamics of gene repertoires, and the ecology of plasmids.
共轭驱动适应性特征在原核生物中的水平转移。四分之一的质粒编码自主共轭所需的功能,其余的则最终可通过共轭进行移动。为了了解质粒可移动性的进化,我们研究了质粒大小、基因库和与共轭相关的基因。发现质粒基因库与松弛酶的进化率密切相关,例如,95%相同的松弛酶的大多数质粒对,其同源物少于 50%。在 249 个最近的移动类型转变中,我们观察到明显有更多的质粒失去共轭能力。这些转变与基因库的更大变化有关,可能由转座元件介导,包括共轭位点的假基因化、减少不兼容性问题的复制酶交换,以及其他基因的广泛丧失。在质粒分类的微观进化尺度上,移动类型的转变有时会导致新的分类单元的产生。有趣的是,大多数从共轭到可移动的质粒的转变似乎在长期内丢失。这表明存在一个源汇动态,其中共轭质粒产生非共轭质粒,这些质粒往往适应性较差,经常丢失。尽管如此,在某些情况下,这些松弛酶似乎已经进化为能够有效地在转座中进行质粒移动,可能是通过劫持多个共轭系统。这导致了可移动质粒的专门松弛酶。总之,质粒可移动性的进化是频繁的,它塑造了细菌中的基因流动模式、基因库的动态和质粒的生态学。