Suppr超能文献

3D细胞合成器——一种利用二维细胞分割方法进行三维细胞分割的通用流程。

3DCellComposer - A Versatile Pipeline Utilizing 2D Cell Segmentation Methods for 3D Cell Segmentation.

作者信息

Chen Haoran, Murphy Robert F

机构信息

Computational Biology Department, School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213, USA.

出版信息

bioRxiv. 2024 Oct 27:2024.03.08.584082. doi: 10.1101/2024.03.08.584082.

Abstract

BACKGROUND

Cell segmentation is crucial in bioimage informatics, as its accuracy directly impacts conclusions drawn from cellular analyses. While many approaches to 2D cell segmentation have been described, 3D cell segmentation has received much less attention. 3D segmentation faces significant challenges, including limited training data availability due to the difficulty of the task for human annotators, and inherent three-dimensional complexity. As a result, existing 3D cell segmentation methods often lack broad applicability across different imaging modalities.

RESULTS

To address this, we developed a generalizable approach for using 2D cell segmentation methods to produce accurate 3D cell segmentations. We implemented this approach in 3DCellComposer, a versatile, open-source package that allows users to choose any existing 2D segmentation model appropriate for their tissue or cell type(s) without requiring any additional training. Importantly, we have enhanced our open source CellSegmentationEvaluator quality evaluation tool to support 3D images. It provides metrics that allow selection of the best approach for a given imaging source and modality, without the need for human annotations to assess performance. Using these metrics, we demonstrated that our approach produced high-quality 3D segmentations of tissue images, and that it could outperform an existing 3D segmentation method on the cell culture images with which it was trained.

CONCLUSIONS

3DCellComposer, when paired with well-trained 2D segmentation models, provides an important alternative to acquiring human-annotated 3D images for new sample types or imaging modalities and then training 3D segmentation models using them. It is expected to be of significant value for large scale projects such as the Human BioMolecular Atlas Program.

摘要

背景

细胞分割在生物图像信息学中至关重要,因为其准确性直接影响细胞分析得出的结论。虽然已经描述了许多二维细胞分割方法,但三维细胞分割受到的关注要少得多。三维分割面临重大挑战,包括由于人类注释任务难度大导致训练数据可用性有限,以及固有的三维复杂性。因此,现有的三维细胞分割方法通常缺乏跨不同成像模态的广泛适用性。

结果

为了解决这个问题,我们开发了一种可推广的方法,使用二维细胞分割方法来生成准确的三维细胞分割。我们在3DCellComposer中实现了这种方法,这是一个通用的开源软件包,允许用户选择任何适合其组织或细胞类型的现有二维分割模型,而无需任何额外的训练。重要的是,我们增强了我们的开源细胞分割评估器质量评估工具以支持三维图像。它提供了一些指标,允许为给定的成像源和模态选择最佳方法,而无需人工注释来评估性能。使用这些指标,我们证明了我们的方法能够对组织图像进行高质量的三维分割,并且在其训练所用的细胞培养图像上能够优于现有的三维分割方法。

结论

3DCellComposer与训练有素的二维分割模型配合使用时,为获取新样本类型或成像模态的人工注释三维图像,然后使用它们训练三维分割模型提供了一个重要的替代方案。预计它对于诸如人类生物分子图谱计划等大规模项目具有重要价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验