Suppr超能文献

运用机器学习模型预测植物中农药的消解半衰期。

Predicting pesticide dissipation half-life intervals in plants with machine learning models.

机构信息

Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, United States.

Institute of Plant Protection, Beijing Academy of Agricultural and Forestry Science, Beijing 100097, PR China.

出版信息

J Hazard Mater. 2022 Aug 15;436:129177. doi: 10.1016/j.jhazmat.2022.129177. Epub 2022 May 26.

Abstract

Pesticide dissipation half-life in plants is an important factor to assessing environmental fate of pesticides and establishing pre-harvest intervals critical to good agriculture practices. However, empirically measured pesticide dissipation half-lives are highly variable and the accurate prediction with models is challenging. This study utilized a dataset of pesticide dissipation half-lives containing 1363 datapoints, 311 pesticides, 10 plant types, and 4 plant component classes. Novel dissipation half-life intervals were proposed and predicted to account for high variations in empirical data. Four machine learning models (i.e., gradient boosting regression tree [GBRT], random forest [RF], supporting vector classifier [SVC], and logistic regression [LR]) were developed to predict dissipation half-life intervals using extended connectivity fingerprints (ECFP), temperature, plant type, and plant component class as model inputs. GBRT-ECFP had the best model performance with F1-micro score of 0.698 ± 0.010 for the binary classification compared with other machine learning models (e.g., LR-ECFP, F1-micro= 0.662 ± 0.009). Feature importance analysis of molecular structures in the binary classification identified aromatic rings, carbonyl group, organophosphate, =C-H, and N-containing heterocyclic groups as important substructures related to pesticide dissipation half-lives. This study suggests the utility of machine learning models in assessing the environmental fate of pesticides in agricultural crops.

摘要

在评估农药的环境归宿和建立良好农业实践所需的收获前间隔期时,植物中农药的消解半衰期是一个重要的因素。然而,经验测量的农药消解半衰期变化很大,用模型进行准确预测具有挑战性。本研究利用了一个包含 1363 个数据点、311 种农药、10 种植物类型和 4 种植物成分类别的农药消解半衰期数据集。提出并预测了新的消解半衰期区间,以解释经验数据中的高变异性。开发了四种机器学习模型(即梯度提升回归树[GBRT]、随机森林[RF]、支持向量分类器[SVC]和逻辑回归[LR]),使用扩展连接指纹(ECFP)、温度、植物类型和植物成分类作为模型输入来预测消解半衰期区间。与其他机器学习模型(例如,LR-ECFP,F1-微观=0.662±0.009)相比,GBRT-ECFP 用于二元分类的模型性能最佳,F1-微观得分为 0.698±0.010。二元分类中分子结构的特征重要性分析确定了芳环、羰基、有机磷、=C-H 和含氮杂环基团作为与农药消解半衰期相关的重要亚结构。本研究表明机器学习模型在评估农业作物中农药的环境归宿方面具有实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验