Biomedical Sciences and Engineering, Koç University, 34450, Istanbul, Turkey.
Koç University Research Center for Translational Medicine (KUTTAM), Koç University, 34450, Istanbul, Turkey.
Acta Biomater. 2022 Jul 15;147:198-208. doi: 10.1016/j.actbio.2022.05.040. Epub 2022 May 25.
Corneal collagen crosslinking (CXL) is a commonly used minimally invasive surgical technique to prevent the progression of corneal ectasias, such as keratoconus. Unfortunately, riboflavin/UV-A light-based CXL procedures have not been successfully applied to all patients, and result in frequent complications, such as corneal haze and endothelial damage. We propose a new method for corneal crosslinking by using a Ruthenium (Ru) based water-soluble photoinitiator and visible light (430 nm). Tris(bipyridine)ruthenium(II) ([Ru(bpy)]) and sodium persulfate (SPS) mixture covalently crosslinks free tyrosine, histidine, and lysine groups under visible light (400-450 nm), which prevents UV-A light-induced cytotoxicity in an efficient and time saving collagen crosslinking procedure. In this study, we investigated the effects of the Ru/visible blue light procedure on the viability and toxicity of human corneal epithelium, limbal, and stromal cells. Then bovine corneas crosslinked with ruthenium mixture and visible light were characterized, and their biomechanical properties were compared with the customized riboflavin/UV-A crosslinking approach in the clinics. Crosslinked corneas with a ruthenium-based CXL approach showed significantly higher young's modulus compared to riboflavin/UV-A light-based method applied to corneas. In addition, crosslinked corneas with both methods were characterized to evaluate the hydrodynamic behavior, optical transparency, and enzymatic resistance. In all biomechanical, biochemical, and optical tests used here, corneas that were crosslinked with ruthenium-based approach demonstrated better results than that of corneas crosslinked with riboflavin/ UV-A. This study is promising to be translated into a non-surgical therapy for all ectatic corneal pathologies as a result of mild conditions introduced here with visible light exposure and a nontoxic ruthenium-based photoinitiator to the cornea. STATEMENT OF SIGNIFICANCE: Keratoconus, one of the most frequent corneal diseases, could be treated with riboflavin and ultraviolet light-based photo-crosslinking application to the cornea of the patients. Unfortunately, this method has irreversible side effects and cannot be applied to all keratoconus patients. In this study, we exploited the photoactivation behavior of an organoruthenium compound to achieve corneal crosslinking. Ruthenium-based organic complex under visible light demonstrated significantly better biocompatibility and superior biomechanical results than riboflavin and ultraviolet light application. This study promises to translate into a new fast, efficient non-surgical therapy option for all ectatic corneal pathologies.
角膜胶原交联 (CXL) 是一种常用的微创外科技术,用于防止角膜扩张,如圆锥角膜。不幸的是,基于核黄素/UV-A 光的 CXL 程序并未成功应用于所有患者,并且会导致频繁的并发症,如角膜混浊和内皮损伤。我们提出了一种新的角膜交联方法,使用基于钌 (Ru) 的水溶性光引发剂和可见光 (430nm)。三(联吡啶)钌(II) ([Ru(bpy)]) 和过硫酸钠 (SPS) 混合物在可见光 (400-450nm) 下共价交联游离的酪氨酸、组氨酸和赖氨酸基团,这在有效且省时的胶原交联过程中防止了 UV-A 光诱导的细胞毒性。在这项研究中,我们研究了 Ru/可见光蓝紫光程序对人角膜上皮、缘和基质细胞活力和毒性的影响。然后对用钌混合物和可见光交联的牛角膜进行了表征,并将其生物力学特性与临床中定制的核黄素/UV-A 交联方法进行了比较。与应用于角膜的基于核黄素/UV-A 光的方法相比,基于 Ru 的 CXL 方法交联的角膜表现出明显更高的杨氏模量。此外,用两种方法对交联的角膜进行了表征,以评估流体动力学行为、光学透明度和酶抗性。在所有生物力学、生化和光学测试中,用 Ru 基方法交联的角膜的结果均优于用核黄素/UV-A 光交联的角膜。由于这里引入的条件较轻,并且对角膜使用了无毒的基于钌的光引发剂,因此该研究有望转化为一种针对所有扩张性角膜病变的非手术治疗方法。意义声明:圆锥角膜是最常见的角膜疾病之一,可以用核黄素和紫外线光基于光交联应用于患者的角膜来治疗。不幸的是,这种方法具有不可逆转的副作用,不能应用于所有圆锥角膜患者。在这项研究中,我们利用了有机钌化合物的光激活行为来实现角膜交联。基于 Ru 的有机配合物在可见光下表现出明显更好的生物相容性和更高的生物力学性能,优于核黄素和紫外线光的应用。这项研究有望转化为一种针对所有扩张性角膜病变的快速、高效的非手术治疗选择。