Suppr超能文献

随机引物扩增法用于 SARS-CoV-2 病毒的全基因组测序。

A random priming amplification method for whole genome sequencing of SARS-CoV-2 virus.

机构信息

The Pirbright Institute, Pirbright, Woking, Surrey, UK.

出版信息

BMC Genomics. 2022 May 30;23(1):406. doi: 10.1186/s12864-022-08563-z.

Abstract

BACKGROUND

Non-targeted whole genome sequencing is a powerful tool to comprehensively identify constituents of microbial communities in a sample. There is no need to direct the analysis to any identification before sequencing which can decrease the introduction of bias and false negatives results. It also allows the assessment of genetic aberrations in the genome (e.g., single nucleotide variants, deletions, insertions and copy number variants) including in noncoding protein regions.

METHODS

The performance of four different random priming amplification methods to recover RNA viral genetic material of SARS-CoV-2 were compared in this study. In method 1 (H-P) the reverse transcriptase (RT) step was performed with random hexamers whereas in methods 2-4 RT incorporating an octamer primer with a known tag. In methods 1 and 2 (K-P) sequencing was applied on material derived from the RT-PCR step, whereas in methods 3 (SISPA) and 4 (S-P) an additional amplification was incorporated before sequencing.

RESULTS

The SISPA method was the most effective and efficient method for non-targeted/random priming whole genome sequencing of SARS-CoV-2 that we tested. The SISPA method described in this study allowed for whole genome assembly of SARS-CoV-2 and influenza A(H1N1)pdm09 in mixed samples. We determined the limit of detection and characterization of SARS-CoV-2 virus which was 10 pfu/ml (Ct, 22.4) for whole genome assembly and 10 pfu/ml (Ct, 30) for metagenomics detection.

CONCLUSIONS

The SISPA method is predominantly useful for obtaining genome sequences from RNA viruses or investigating complex clinical samples as no prior sequence information is needed. It might be applied to monitor genomic virus changes, virus evolution and can be used for fast metagenomics detection or to assess the general picture of different pathogens within the sample.

摘要

背景

非靶向全基因组测序是一种强大的工具,可以全面鉴定样本中微生物群落的组成成分。在测序之前不需要将分析指向任何特定的鉴定,这可以减少引入偏差和假阴性结果的可能性。它还允许评估基因组中的遗传异常(例如,单核苷酸变异、缺失、插入和拷贝数变异),包括非编码蛋白区域。

方法

本研究比较了四种不同随机引物扩增方法对 SARS-CoV-2 病毒 RNA 遗传物质的回收效果。在方法 1(H-P)中,逆转录(RT)步骤使用随机六聚体进行,而在方法 2-4 中,RT 步骤使用带有已知标签的八聚体引物。在方法 1 和 2(K-P)中,测序应用于 RT-PCR 步骤得到的材料,而在方法 3(SISPA)和 4(S-P)中,在测序前加入了额外的扩增步骤。

结果

我们测试的 SISPA 方法是最有效和高效的非靶向/随机引物 SARS-CoV-2 全基因组测序方法。本研究中描述的 SISPA 方法允许对混合样本中的 SARS-CoV-2 和流感 A(H1N1)pdm09 进行全基因组组装。我们确定了 SARS-CoV-2 病毒的检测限和特征,全基因组组装的检测限为 10 个病毒颗粒/ml(Ct 值为 22.4),宏基因组检测的检测限为 10 个病毒颗粒/ml(Ct 值为 30)。

结论

SISPA 方法主要用于从 RNA 病毒中获取基因组序列或研究复杂的临床样本,因为不需要事先知道序列信息。它可以用于监测病毒基因组的变化、病毒的进化,也可以用于快速宏基因组检测,或评估样本中不同病原体的总体情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ffa/9150363/848d9ee492d3/12864_2022_8563_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验