Gauthier Nick P G, Chan Wilson, Locher Kerstin, Smailus Duane, Coope Robin, Charles Marthe, Jassem Agatha, Kopetzky Jennifer, Chorlton Samuel D, Manges Amee R
Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada.
J Infect Dis. 2024 Dec 16;230(6):e1245-e1253. doi: 10.1093/infdis/jiae226.
Current molecular diagnostics are limited in the number and type of detectable pathogens. Metagenomic next-generation sequencing (mNGS) is an emerging, and increasingly feasible, pathogen-agnostic diagnostic approach. Translational barriers prohibit the widespread adoption of this technology in clinical laboratories. We validate an end-to-end mNGS assay for detection of respiratory viruses. Our assay is optimized to reduce turnaround time, lower cost per sample, increase throughput, and deploy secure and actionable bioinformatic results.
We validated our assay using residual nasopharyngeal swab specimens from Vancouver General Hospital (n = 359), which were reverse-transcription polymerase chain reaction positive, or negative for influenza, severe acute respiratory syndrome coronavirus 2, and respiratory syncytial virus. We quantified sample stability, assay precision, the effect of background nucleic acid levels, and analytical limits of detection. Diagnostic performance metrics were estimated.
We report that our mNGS assay is highly precise and semiquantitative, with analytical limits of detection ranging from 103 to 104 copies/mL. Our assay is highly specific (100%) and sensitive (61.9% overall: 86.8%; reverse-transcription polymerase chain reaction cycle threshold < 30). Multiplexing capabilities enable processing of up to 55 specimens simultaneously on an Oxford Nanopore GridION device, with results reported within 12 hours.
This study report outlines the diagnostic performance and feasibility of mNGS for respiratory viral diagnostics, infection control, and public health surveillance. We addressed translational barriers to widespread mNGS adoption.
目前的分子诊断在可检测病原体的数量和类型方面存在局限性。宏基因组下一代测序(mNGS)是一种新兴的、越来越可行的、无需预先知道病原体种类的诊断方法。转化障碍阻碍了这项技术在临床实验室中的广泛应用。我们验证了一种用于检测呼吸道病毒的端到端mNGS检测方法。我们的检测方法经过优化,以减少周转时间、降低每个样本的成本、提高通量,并提供安全且可操作的生物信息学结果。
我们使用温哥华总医院的残留鼻咽拭子标本(n = 359)验证了我们的检测方法,这些标本对流感、严重急性呼吸综合征冠状病毒2和呼吸道合胞病毒的逆转录聚合酶链反应呈阳性或阴性。我们对样本稳定性、检测精密度、背景核酸水平的影响以及分析检测限进行了量化。评估了诊断性能指标。
我们报告称,我们的mNGS检测方法高度精确且具有半定量性,分析检测限范围为103至104拷贝/毫升。我们的检测方法具有高度特异性(100%)和敏感性(总体为61.9%:86.8%;逆转录聚合酶链反应循环阈值<30)。多重检测能力使牛津纳米孔GridION设备能够同时处理多达55个样本,结果在12小时内报告。
本研究报告概述了mNGS在呼吸道病毒诊断、感染控制和公共卫生监测方面的诊断性能和可行性。我们解决了mNGS广泛应用的转化障碍。