Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China.
State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, P. R. China.
Small. 2022 Jul;18(27):e2201585. doi: 10.1002/smll.202201585. Epub 2022 May 29.
To overcome the autophagy compromised mechanism of protective cellular processes by "eating"/"digesting" damaged organelles or potentially toxic materials with autolysosomes in tumor cells, lysosomal impairment can be utilized as a traditional autophagy dysfunction route for tumor therapy; however, this conventional one-way autophagy dysfunction approach is always limited by the therapeutic efficacy. Herein, an innovative pharmacological strategy that can excessively provoke autophagy via endoplasmic reticulum (ER) stress is implemented along with lysosomal impairment to enhance autophagy dysfunction. In this work, the prepared tellurium double-headed nanobullets (TeDNBs) with controllable morphology are modified with human serum albumin (HSA) which facilitates internalization by tumor cells. On the one hand, ER stress can be stimulated by upregulating the phosphorylation eukaryotic translation initiation factor 2 (P-eIF2α) owing to the production of tellurite (TeO ) in the specifical hydrogen peroxide-rich tumor environment; thus, autophagy overstimulation occurs. On the other hand, OME can deacidify and impair lysosomes by downregulating lysosomal-associated membrane protein 1 (LAMP1), therefore blocking autolysosome formation. Both in vitro and in vivo results demonstrate that the synthesized TeDNBs-HSA/OME (TeDNBs-HO) exhibit excellent therapeutic efficacy by autophagy dysfunction through ER stress induction and lysosomal damnification. Thus, TeDNBs-HO is verified to be a promising theranostic nanoagent for effective tumor therapy.
为了克服肿瘤细胞中自噬体通过自噬溶酶体“吞噬”/“消化”受损细胞器或潜在毒性物质的保护细胞过程受损的机制,溶酶体损伤可以作为肿瘤治疗的传统自噬功能障碍途径加以利用;然而,这种传统的单方向自噬功能障碍方法总是受到治疗效果的限制。在此,通过内质网(ER)应激过度引发自噬的创新药理学策略与溶酶体损伤相结合,以增强自噬功能障碍。在这项工作中,通过用牛血清白蛋白(HSA)对具有可控形态的碲双-headed 纳米子弹(TeDNBs)进行修饰,促进了肿瘤细胞的内化。一方面,由于特定的富含过氧化氢的肿瘤环境中碲化物(TeO )的产生,上调磷酸化真核起始因子 2(P-eIF2α)可以刺激 ER 应激,从而导致自噬过度刺激。另一方面,OME 可以通过下调溶酶体相关膜蛋白 1(LAMP1)使溶酶体去酸化和损伤,从而阻断自噬溶酶体的形成。体外和体内结果均表明,通过诱导 ER 应激和溶酶体损伤导致自噬功能障碍,合成的 TeDNBs-HSA/OME(TeDNBs-HO)表现出优异的治疗效果。因此,TeDNBs-HO 被验证为一种用于有效肿瘤治疗的有前途的治疗诊断纳米制剂。