Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China.
Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, P. R. China.
Adv Mater. 2023 May;35(18):e2211597. doi: 10.1002/adma.202211597. Epub 2023 Mar 18.
The spatiotemporal characterization of signaling crosstalk between subcellular organelles is crucial for the therapeutic effect of malignant tumors. Blocking interactive crosstalk in this fashion is significant but challenging. Herein, a communication interception strategy is reported, which blocks spatiotemporal crosstalk between subcellular organelles for cancer therapy with underlying molecular mechanisms. Briefly, amorphous-core@crystalline-shell Fe@Fe O nanoparticles (ACFeNPs) are fabricated to specifically block the crosstalk between lysosomes and endoplasmic reticulum (ER) by hydroxyl radicals generated along with their trajectory through heterogeneous Fenton reaction. ACFeNPs initially enter lysosomes and trigger autophagy, then continuous lysosomal damage blocks the generation of functional autolysosomes, which mediates ER-lysosome crosstalk, thus the autophagy is paralyzed. Thereafter, released ACFeNPs from lysosomes induce ER stress. Without the alleviation by autophagy, the ER-stress-associated apoptotic pathway is fully activated, resulting in a remarkable therapeutic effect. This strategy provides a wide venue for nanomedicine to exert biological advantages and confers new perspective for the design of novel anticancer drugs.
亚细胞细胞器之间信号转导串扰的时空特征对于恶性肿瘤的治疗效果至关重要。以这种方式阻断相互作用的串扰具有重要意义,但也具有挑战性。在此,我们报道了一种通讯拦截策略,该策略通过伴随其通过异质 Fenton 反应的轨迹产生的羟基自由基,特异性阻断溶酶体和内质网 (ER) 之间的时空串扰,用于癌症治疗,并阐明了其潜在的分子机制。简而言之,通过制备无定形核@结晶壳 Fe@Fe O 纳米颗粒 (ACFeNPs) 来特异性阻断溶酶体和内质网 (ER) 之间的串扰。ACFeNPs 最初进入溶酶体并触发自噬,然后持续的溶酶体损伤阻止功能性自溶酶体的产生,从而介导 ER-溶酶体串扰,从而使自噬瘫痪。随后,从溶酶体中释放的 ACFeNPs 诱导内质网应激。没有自噬的缓解,内质网应激相关的凋亡途径被完全激活,导致显著的治疗效果。该策略为纳米医学发挥生物学优势提供了广阔的途径,并为新型抗癌药物的设计赋予了新的视角。