Wang Taohan, Yamakawa Yuji
School of Engineering, The University of Tokyo, Tokyo, Japan.
Interfaculty Initiative in Information Studies, The University of Tokyo, Tokyo, Japan.
Front Neurorobot. 2022 May 13;16:886068. doi: 10.3389/fnbot.2022.886068. eCollection 2022.
Tracking and manipulating deformable linear objects (DLOs) has great potential in the industrial world. However, estimating the object's state is crucial and challenging, especially when dealing with heavy occlusion situations and physical properties of different objects. To address these problems, we introduce a novel tracking algorithm to observe and estimate the states of DLO. The proposed tracking algorithm is based on the Coherent Point Drift (CPD), which registers the observed point cloud, and the finite element method (FEM) model encodes physical properties. The Gaussian mixture model with CPD regularization generates constraints to deform a given FEM model into desired shapes. The FEM model encodes the local structure, the global topology, and the material property to better approximate the deformation process in the real world without using simulation software. A series of simulations and real data tracking experiments have been conducted on deformable objects, such as rope and iron wire, to demonstrate the robustness and accuracy of our method in the presence of occlusion.
跟踪和操纵可变形线性物体(DLO)在工业领域具有巨大潜力。然而,估计物体的状态至关重要且具有挑战性,尤其是在处理严重遮挡情况和不同物体的物理特性时。为了解决这些问题,我们引入了一种新颖的跟踪算法来观察和估计DLO的状态。所提出的跟踪算法基于相干点漂移(CPD),它用于配准观测到的点云,有限元方法(FEM)模型对物理特性进行编码。带有CPD正则化的高斯混合模型生成约束,以使给定的FEM模型变形为所需形状。FEM模型对局部结构、全局拓扑和材料属性进行编码,以便在不使用模拟软件的情况下更好地逼近现实世界中的变形过程。我们对诸如绳索和铁丝等可变形物体进行了一系列模拟和实际数据跟踪实验,以证明我们的方法在存在遮挡情况下的鲁棒性和准确性。