Freyre-González Julio A, Escorcia-Rodríguez Juan M, Gutiérrez-Mondragón Luis F, Martí-Vértiz Jerónimo, Torres-Franco Camila N, Zorro-Aranda Andrea
Regulatory Systems Biology Research Group, Program of Systems Biology, Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, México.
Undergraduate Program in Genomic Sciences, Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, México.
Front Bioeng Biotechnol. 2022 May 12;10:888732. doi: 10.3389/fbioe.2022.888732. eCollection 2022.
Synthetic biology aims to apply engineering principles for the rational, systematical design and construction of biological systems displaying functions that do not exist in nature or even building a cell from scratch. Understanding how molecular entities interconnect, work, and evolve in an organism is pivotal to this aim. Here, we summarize and discuss some historical organizing principles identified in bacterial gene regulatory networks. We propose a new layer, the concilion, which is the group of structural genes and their local regulators responsible for a single function that, organized hierarchically, coordinate a response in a way reminiscent of the deliberation and negotiation that take place in a council. We then highlight the importance that the network structure has, and discuss that the natural decomposition approach has unveiled the system-level elements shaping a common functional architecture governing bacterial regulatory networks. We discuss the incompleteness of gene regulatory networks and the need for network inference and benchmarking standardization. We point out the importance that using the network structural properties showed to improve network inference. We discuss the advances and controversies regarding the consistency between reconstructions of regulatory networks and expression data. We then discuss some perspectives on the necessity of studying regulatory networks, considering the interactions' strength distribution, the challenges to studying these interactions' strength, and the corresponding effects on network structure and dynamics. Finally, we explore the ability of evolutionary systems biology studies to provide insights into how evolution shapes functional architecture despite the high evolutionary plasticity of regulatory networks.
合成生物学旨在应用工程学原理,对具有自然界中不存在的功能的生物系统进行合理、系统的设计与构建,甚至是从头构建一个细胞。理解分子实体在生物体中如何相互连接、发挥作用以及进化,对于实现这一目标至关重要。在此,我们总结并讨论在细菌基因调控网络中发现的一些历史组织原则。我们提出了一个新层次,即“协调组”,它是负责单一功能的一组结构基因及其局部调节因子,这些基因和调节因子以分层方式组织,协调反应的方式让人联想到在议会中进行的审议和协商。然后,我们强调网络结构的重要性,并讨论自然分解方法如何揭示了塑造细菌调控网络共同功能架构的系统层面要素。我们讨论了基因调控网络的不完整性以及网络推断和基准标准化的必要性。我们指出利用网络结构特性对改进网络推断的重要性。我们讨论了关于调控网络重建与表达数据之间一致性的进展和争议。然后,我们从研究调控网络的必要性、考虑相互作用强度分布、研究这些相互作用强度所面临的挑战以及对网络结构和动态的相应影响等方面进行了一些探讨。最后,我们探讨了进化系统生物学研究在洞察进化如何塑造功能架构方面的能力,尽管调控网络具有高度的进化可塑性。