Farooq Umar, Ahmed Jahangeer, Alshehri Saad M, Mao Yuanbing, Ahmad Tokeer
Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
ACS Omega. 2022 May 9;7(20):16952-16967. doi: 10.1021/acsomega.1c07250. eCollection 2022 May 24.
Dependence on fossil fuels for energy purposes leads to the global energy crises due to the nonrenewable nature and high CO production for environmental pollution. Therefore, new ways of nanocatalysis for environmental remediation and sustainable energy resources are being explored. Herein, we report a facile surfactant free, low temperature, and environmentally benign hydrothermal route for development of pure and (5, 10, 15, and 20 mol %) Ta-doped horizontally and vertically interwoven NaNbO nanohierarchitecture photocatalysts. To the best of our knowledge, such a type of hierarchical structure of NaNbO has never been reported before, and changes in the microstructure of these nanoarchitectures on Ta-doping has also been examined for the first time. As-synthesized nanostructures were characterized by different techniques including X-ray diffraction analysis, electron microscopic studies, X-ray photoelectron spectroscopic studies, etc. Ta-doping considerably affects the microstructure of the nanohierarchitectures of NaNbO, which was analyzed by FESEM analysis. The UV-visible diffused reflectance spectroscopy study shows considerable change in the band gap of as-synthesized nanostructures and was found to be ranging from 2.8 to 3.5 eV in pure and different mole % Ta-doped NaNbO. With an increase in dopant concentration, the surface area increases and was equal to 5.8, 6.8, 7.0, 9.2, and 9.7 m/g for pure and 5, 10, 15, and 20 mol % Ta-doped NaNbO, respectively. Photocatalytic activity toward the degradation of methylene blue dye and H evolution reaction shows the highest activity (89% dye removal and 21.4 mmol g catalyst H evolution) for the 10 mol % NaNbO nanostructure which was attributed to a change in the conduction band maximum of the material. At 100 °C and 500 kHz, the dielectric constants of pure and 5, 10, 15, and 20 mol % Ta-doped NaNbO were found to be 111, 510, 491, 488, and 187, respectively. The current study provides the rational insight into the design of nanohierarchitectures and how microstructure affects different properties of the material upon doping.
由于化石燃料的不可再生性以及燃烧时产生大量二氧化碳造成环境污染,依赖化石燃料作为能源导致了全球能源危机。因此,人们正在探索用于环境修复和可持续能源的新型纳米催化方法。在此,我们报道了一种简便的、无表面活性剂、低温且环境友好的水热法,用于制备纯的以及(5、10、15和20摩尔%)钽掺杂的水平和垂直交织的铌酸钠纳米层级结构光催化剂。据我们所知,此前从未报道过这种类型的铌酸钠层级结构,并且首次研究了钽掺杂对这些纳米结构微观结构的影响。通过包括X射线衍射分析、电子显微镜研究、X射线光电子能谱研究等不同技术对合成的纳米结构进行了表征。钽掺杂显著影响铌酸钠纳米层级结构的微观结构,这通过场发射扫描电子显微镜分析得以证实。紫外可见漫反射光谱研究表明,合成的纳米结构的带隙有显著变化,发现纯铌酸钠以及不同摩尔百分比钽掺杂的铌酸钠的带隙范围在2.8至3.5电子伏特之间。随着掺杂剂浓度的增加,表面积增大,纯铌酸钠以及5、10、15和20摩尔%钽掺杂的铌酸钠的表面积分别为5.8、6.8、7.0、9.2和9.7平方米/克。对亚甲基蓝染料降解和析氢反应的光催化活性表明,10摩尔%铌酸钠纳米结构具有最高活性(89%的染料去除率和21.4毫摩尔/克催化剂的析氢量),这归因于材料导带最大值的变化。在100℃和500千赫兹下,发现纯铌酸钠以及5、10、15和20摩尔%钽掺杂的铌酸钠的介电常数分别为ll1、510、491、488和187。当前研究为纳米层级结构的设计以及微观结构如何影响掺杂后材料的不同性能提供了合理的见解。