Li Yuekun, Li Li, Liu Fangyan, Wang Biao, Gao Feng, Liu Chuan, Fang Jingyun, Huang Feng, Lin Zhang, Wang Mengye
School of Materials, Sun Yat-Sen University, Shenzhen, 518107 China.
State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou, 510275 China.
Nano Res. 2022;15(9):7986-7993. doi: 10.1007/s12274-022-4506-0. Epub 2022 Jul 12.
HO is an environmentally friendly chemical for a wide range of water treatments. The industrial production of HO is an anthraquinone oxidation process, which, however, consumes extensive energy and produces pollution. Here we report a green and sustainable piezocatalytic intermediate water splitting process to simultaneously obtain HO and H using single crystal vanadium (V)-doped NaNbO (V-NaNbO) nanocubes as catalysts. The introduction of V improves the specific surface area and active sites of NaNbO. Notably, V-NaNbO piezocatalysts of 10 mg exhibit 3.1-fold higher piezocatalytic efficiency than the same catalysts of 50 mg, as more piezocatalysts lead to higher probability of aggregation. The aggregation causes reducing active sites and decreased built-in electric field due to the neutralization between different nano-catalysts. Remarkably, piezocatalytic HO and H production rates of V-NaNbO (10 mol%) nanocubes (102.6 and 346.2 µmol·g·h, respectively) are increased by 2.2 and 4.6 times compared to the as-prepared pristine NaNbO counterparts, respectively. This improved catalytic efficiency is attributed to the promoted piezo-response and more active sites of NaNbO catalysts after V doping, as uncovered by piezo-response force microscopy (PFM) and density functional theory (DFT) simulation. More importantly, our DFT results illustrate that inducing V could reduce the dynamic barrier of water dissociation over NaNbO, thus enhancing the yield of HO and H. This facile yet robust piezocatalytic route using minimal amounts of catalysts to obtain HO and H may stand out as a promising candidate for environmental applications and water splitting.
Supplementary material (typical Raman spectra of NaNbO and V-NaNbO with various doping concentrations (Fig. S1). XPS spectra of Na 1s (Fig. S2). PL spectra of solution obtained from the piezocatalytic system using NaNbO and V-NaNbO (10 mol%) as the catalysts after 1 h (Fig. S3). The length of NaNbO and V-NaNbO nanocubes calculated from XRD data of their (101) planes (Table S1)) is available in the online version of this article at 10.1007/s12274-022-4506-0.
过氧化氢(HO)是一种适用于多种水处理的环保化学品。过氧化氢的工业生产是一个蒽醌氧化过程,然而,该过程消耗大量能源并产生污染。在此,我们报道了一种绿色可持续的压电催化中间水分裂过程,以单晶钒(V)掺杂的铌酸钠(V-NaNbO)纳米立方体作为催化剂,同时获得过氧化氢和氢气(H)。V的引入提高了铌酸钠的比表面积和活性位点。值得注意的是,10毫克的V-NaNbO压电催化剂的压电催化效率比50毫克的相同催化剂高3.1倍,因为更多的压电催化剂会导致更高的聚集概率。聚集会导致活性位点减少,并且由于不同纳米催化剂之间的中和作用,内置电场降低。值得注意的是,与制备的原始铌酸钠对应物相比,V-NaNbO(10摩尔%)纳米立方体的压电催化过氧化氢和氢气生成速率(分别为102.6和346.2微摩尔·克·小时)分别提高了2.2倍和4.6倍。这种提高的催化效率归因于V掺杂后铌酸钠催化剂的压电响应增强和更多活性位点,这由压电响应力显微镜(PFM)和密度泛函理论(DFT)模拟揭示。更重要的是,我们的DFT结果表明,引入V可以降低铌酸钠上水离解的动力学势垒,从而提高过氧化氢和氢气的产率。这种使用少量催化剂获得过氧化氢和氢气的简便而稳健的压电催化途径可能是环境应用和水分裂的一个有前途的候选方法。
补充材料(不同掺杂浓度的铌酸钠和V-NaNbO的典型拉曼光谱(图S1)。Na 1s的XPS光谱(图S2)。使用铌酸钠和V-NaNbO(10摩尔%)作为催化剂,在1小时后从压电催化系统获得的溶液的PL光谱(图S3)。根据其(101)平面的XRD数据计算的铌酸钠和V-NaNbO纳米立方体的长度(表S1))可在本文的在线版本中获取,网址为10.1007/s12274-022-4506-0。