Hung Chieh-Ming, Lin Jin-Tai, Yang Yu-Hsuan, Liu Yi-Chun, Gu Mong-Wen, Chou Tai-Che, Wang Sheng-Fu, Chen Zi-Qin, Wu Chi-Chi, Chen Li-Cyun, Hsu Cheng-Chih, Chen Chun-Hsien, Chiu Ching-Wen, Chen Hsieh-Chih, Chou Pi-Tai
Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan.
JACS Au. 2022 Apr 19;2(5):1189-1199. doi: 10.1021/jacsau.2c00160. eCollection 2022 May 23.
Inverted perovskite solar cells (PSCs) have attracted intense attention because of their insignificant hysteresis and low-temperature fabrication process. However, the efficiencies of inverted PSCs are still inferior to those of commercialized silicon solar cells. Also, the poor stability of PSCs is one of the major impedances to commercialization. Herein, we rationally designed and synthesized a new series of electron donor (,-diphenylamino) and acceptor (pyridimium-(CH) -sulfonates) zwitterions as a boundary modulator and systematically investigated their associated interface properties. Comprehensive physical and optoelectronic studies verify that these zwitterions provide a four-in-one functionality: balancing charge carrier transport, suppressing less-coordinated Pb defects, enhancing moisture resistance, and reducing ion migration. Although each functionality may have been reported by specific passivating molecules, a strategy that simultaneously regulates the charge-transfer balance and three other functionalities has not yet been developed. The results are to make an omnidirectional improvement of PSCs. Among all zwitterions, 4-(4-(4-(di-(4-methoxylphenyl)amino)phenyl)propane-1-ium-1-yl)butane-1-sulfonate (OMeZC3) optimizes the balance hole/electron mobility ratio of perovskite to 0.91, and the corresponding PSCs demonstrate a high power conversion efficiency (PCE) of up to 23.15% free from hysteresis, standing out as one of the champion PSCs with an inverted structure. Importantly, the OMeZC3-modified PSC exhibits excellent long-term stability, maintaining almost its initial PCE after being stored at 80% relative humidity for 35 days.
倒置钙钛矿太阳能电池(PSCs)因其滞后现象不明显以及低温制备工艺而备受关注。然而,倒置PSCs的效率仍低于商业化的硅太阳能电池。此外,PSCs稳定性差是商业化的主要障碍之一。在此,我们合理设计并合成了一系列新型的电子供体(二苯基氨基)和受体(吡啶鎓-(CH)-磺酸盐)两性离子作为界面调节剂,并系统地研究了它们相关的界面性质。全面的物理和光电研究证实,这些两性离子具有四重功能:平衡电荷载流子传输、抑制配位不足的Pb缺陷、增强防潮性以及减少离子迁移。尽管每种功能可能已由特定的钝化分子报道过,但尚未开发出一种能同时调节电荷转移平衡和其他三种功能的策略。这些结果将对PSCs进行全方位的改进。在所有两性离子中,4-(4-(4-(二-(4-甲氧基苯基)氨基)phenyl)丙烷-1-鎓-1-基)丁烷-1-磺酸盐(OMeZC3)将钙钛矿的空穴/电子迁移率比优化至0.91,相应的PSCs展现出高达23.15%的高功率转换效率(PCE)且无滞后现象,成为具有倒置结构的最佳PSCs之一。重要的是,经OMeZC3修饰的PSCs表现出优异的长期稳定性,在相对湿度80%下储存35天后几乎保持其初始PCE。