Suppr超能文献

利用模型引导的深度学习加速多回波化学位移编码水脂 MRI。

Accelerating multi-echo chemical shift encoded water-fat MRI using model-guided deep learning.

机构信息

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Magn Reson Med. 2022 Oct;88(4):1851-1866. doi: 10.1002/mrm.29307. Epub 2022 Jun 1.

Abstract

PURPOSE

To accelerate chemical shift encoded (CSE) water-fat imaging by applying a model-guided deep learning water-fat separation (MGDL-WF) framework to the undersampled k-space data.

METHODS

A model-guided deep learning water-fat separation framework is proposed for the acceleration using Cartesian/radial undersampling data. The proposed MGDL-WF combines the power of CSE water-fat imaging model and data-driven deep learning by jointly using a multi-peak fat model and a modified residual U-net network. The model is used to guide the image reconstruction, and the network is used to capture the artifacts induced by the undersampling. A data consistency layer is used in MGDL-WF to ensure the output images to be consistent with the k-space measurements. A Gauss-Newton iteration algorithm is adapted for the gradient updating of the networks.

RESULTS

Compared with the compressed sensing water-fat separation (CS-WF) algorithm/2-step procedure algorithm, the MGDL-WF increased peak signal-to-noise ratio (PSNR) by 5.31/5.23, 6.11/4.54, and 4.75 dB/1.88 dB with Cartesian sampling, and by 4.13/6.53, 2.90/4.68, and 1.68 dB/3.48 dB with radial sampling, at acceleration rates (R) of 4, 6, and 8, respectively. By using MGDL-WF, radial sampling increased the PSNR by 2.07 dB at R = 8, compared with Cartesian sampling.

CONCLUSIONS

The proposed MGDL-WF enables exploiting features of the water images and fat images from the undersampled multi-echo data, leading to improved performance in the accelerated CSE water-fat imaging. By using MGDL-WF, radial sampling can further improve the image quality with comparable scan time in comparison with Cartesian sampling.

摘要

目的

通过将模型引导的深度学习水脂分离(MGDL-WF)框架应用于欠采样 k 空间数据,加速化学位移编码(CSE)水脂成像。

方法

提出了一种基于笛卡尔/径向欠采样数据的模型引导深度学习水脂分离框架。所提出的 MGDL-WF 结合了 CSE 水脂成像模型和数据驱动深度学习的优势,同时使用多峰脂肪模型和改进的残差 U 形网络。该模型用于指导图像重建,网络用于捕获欠采样引起的伪影。在 MGDL-WF 中使用数据一致性层来确保输出图像与 k 空间测量值一致。适应高斯牛顿迭代算法来更新网络的梯度。

结果

与压缩感知水脂分离(CS-WF)算法/两步法相比,MGDL-WF 在笛卡尔采样时,加速比为 4、6 和 8 时,分别将峰值信噪比(PSNR)提高了 5.31/5.23、6.11/4.54 和 4.75/1.88dB,在径向采样时,分别提高了 4.13/6.53、2.90/4.68 和 1.68/3.48dB。使用 MGDL-WF,与笛卡尔采样相比,在加速比为 8 时,径向采样将 PSNR 提高了 2.07dB。

结论

所提出的 MGDL-WF 能够从欠采样多回波数据中利用水图像和脂肪图像的特征,从而提高加速 CSE 水脂成像的性能。与笛卡尔采样相比,使用 MGDL-WF 可以在相当的扫描时间内进一步提高图像质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验