Soft Condensed Matter, Debye Institute of Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France.
J Chem Phys. 2022 May 28;156(20):204503. doi: 10.1063/5.0088581.
In the quest to understand how structure and dynamics are connected in glasses, a number of machine learning based methods have been developed that predict dynamics in supercooled liquids. These methods include both increasingly complex machine learning techniques and increasingly sophisticated descriptors used to describe the environment around particles. In many cases, both the chosen machine learning technique and choice of structural descriptors are varied simultaneously, making it hard to quantitatively compare the performance of different machine learning approaches. Here, we use three different machine learning algorithms-linear regression, neural networks, and graph neural networks-to predict the dynamic propensity of a glassy binary hard-sphere mixture using as structural input a recursive set of order parameters recently introduced by Boattini et al. [Phys. Rev. Lett. 127, 088007 (2021)]. As we show, when these advanced descriptors are used, all three methods predict the dynamics with nearly equal accuracy. However, the linear regression is orders of magnitude faster to train, making it by far the method of choice.
在探索结构和动力学如何在玻璃中相互关联的过程中,已经开发出了许多基于机器学习的方法来预测过冷液体中的动力学。这些方法包括越来越复杂的机器学习技术和越来越复杂的描述符,用于描述粒子周围的环境。在许多情况下,选择的机器学习技术和结构描述符的选择同时变化,使得很难定量比较不同机器学习方法的性能。在这里,我们使用三种不同的机器学习算法——线性回归、神经网络和图神经网络——使用最近由 Boattini 等人提出的递归有序参数集作为结构输入,来预测玻璃态二元硬球混合物的动态倾向。[Phys. Rev. Lett. 127, 088007 (2021)]。正如我们所展示的,当使用这些先进的描述符时,所有三种方法的预测精度几乎相同。然而,线性回归的训练速度要快几个数量级,使其成为迄今为止的首选方法。