Braat Quirine J S, Janzen Giulia, Jansen Bas C, Debets Vincent E, Ciarella Simone, Janssen Liesbeth M C
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Department of Theoretical Physics, Complutense University of Madrid, 28040 Madrid, Spain.
Soft Matter. 2025 Jul 7. doi: 10.1039/d5sm00222b.
Cell motility in dense cell collectives is pivotal in various diseases like cancer metastasis and asthma. A central aspect in these phenomena is the heterogeneity in cell motility, but identifying the motility of individual cells is challenging. Previous work has established the importance of the average cell shape in predicting cell dynamics. Here, we aim to identify the importance of individual cell shape features, rather than collective features, to distinguish between high-motility and low-motility (or zero-motility) cells in heterogeneous cell layers. Employing the cellular Potts model, we generate simulation snapshots and extract static features as inputs for a simple machine-learning model. Our results show that when cells are either motile or non-motile, this machine-learning model can accurately predict a cell's phenotype using only single-cell shape features. Furthermore, we explore scenarios where both cell types exhibit some degree of motility, characterized by high or low motility. In such cases, our findings indicate that a neural network trained on shape features can accurately classify cell motility, particularly when the number of highly motile cells is low, and high-motility cells are significantly more motile compared to low-motility cells. This work offers potential for physics-inspired predictions of single-cell properties with implications for inferring cell dynamics from static histological images.
在诸如癌症转移和哮喘等各种疾病中,致密细胞聚集体中的细胞运动性至关重要。这些现象的一个核心方面是细胞运动性的异质性,但识别单个细胞的运动性具有挑战性。先前的工作已经确立了平均细胞形状在预测细胞动态方面的重要性。在这里,我们旨在确定单个细胞形状特征而非集体特征的重要性,以区分异质细胞层中高运动性和低运动性(或零运动性)的细胞。利用细胞Potts模型,我们生成模拟快照并提取静态特征作为简单机器学习模型的输入。我们的结果表明,当细胞是运动性的或非运动性的时,这个机器学习模型仅使用单细胞形状特征就能准确预测细胞的表型。此外,我们探索了两种细胞类型都表现出一定程度运动性的情况,其特征为高运动性或低运动性。在这种情况下,我们的研究结果表明,基于形状特征训练的神经网络可以准确地对细胞运动性进行分类,特别是当高运动性细胞数量较少且高运动性细胞比低运动性细胞的运动性明显更高时。这项工作为受物理启发的单细胞特性预测提供了潜力,对从静态组织学图像推断细胞动态具有重要意义。