Suppr超能文献

一种基于钙的可塑性模型,用于预测新皮层中的长时程增强和长时程压抑。

A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex.

机构信息

Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.

Department of Neurobiology, the Hebrew University of Jerusalem, Jerusalem, Israel.

出版信息

Nat Commun. 2022 Jun 1;13(1):3038. doi: 10.1038/s41467-022-30214-w.

Abstract

Pyramidal cells (PCs) form the backbone of the layered structure of the neocortex, and plasticity of their synapses is thought to underlie learning in the brain. However, such long-term synaptic changes have been experimentally characterized between only a few types of PCs, posing a significant barrier for studying neocortical learning mechanisms. Here we introduce a model of synaptic plasticity based on data-constrained postsynaptic calcium dynamics, and show in a neocortical microcircuit model that a single parameter set is sufficient to unify the available experimental findings on long-term potentiation (LTP) and long-term depression (LTD) of PC connections. In particular, we find that the diverse plasticity outcomes across the different PC types can be explained by cell-type-specific synaptic physiology, cell morphology and innervation patterns, without requiring type-specific plasticity. Generalizing the model to in vivo extracellular calcium concentrations, we predict qualitatively different plasticity dynamics from those observed in vitro. This work provides a first comprehensive null model for LTP/LTD between neocortical PC types in vivo, and an open framework for further developing models of cortical synaptic plasticity.

摘要

锥体神经元(PCs)构成了新皮层分层结构的骨干,其突触的可塑性被认为是大脑学习的基础。然而,这种长期的突触变化仅在少数几种 PC 类型之间进行了实验表征,这对研究新皮层学习机制构成了重大障碍。在这里,我们引入了一种基于数据约束的突触后钙离子动力学的突触可塑性模型,并在新皮层微电路模型中表明,单个参数集足以统一关于 PC 连接的长时程增强(LTP)和长时程抑制(LTD)的现有实验结果。具体来说,我们发现不同 PC 类型之间的多样化可塑性结果可以通过细胞类型特异性的突触生理学、细胞形态和神经支配模式来解释,而不需要特定类型的可塑性。将模型推广到体内细胞外钙离子浓度,我们预测出与在体观察到的不同的可塑性动力学。这项工作为体内新皮层 PC 类型之间的 LTP/LTD 提供了第一个全面的零模型,并为进一步开发皮质突触可塑性模型提供了一个开放的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97e6/9160074/c6e0a3b50d4d/41467_2022_30214_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验