Suppr超能文献

联合早期预警评分系统预测院内死亡率的总体准确性评估。

Evaluation of the Overall Accuracy of the Combined Early Warning Scoring Systems in the Prediction of In-Hospital Mortality.

作者信息

T P Mishal, T S Deepak, Ramesh Aruna C, K N Vikas, Mahadevaiah Thejeswini

机构信息

Emergency Medicine, Mathikere Sampige (MS) Ramaiah Medical College, Bengaluru, IND.

Anesthesiology, Mathikere Sampige (MS) Ramaiah Medical College, Bengaluru, IND.

出版信息

Cureus. 2022 Apr 25;14(4):e24486. doi: 10.7759/cureus.24486. eCollection 2022 Apr.

Abstract

Introduction Deterioration of clinical condition of in-hospital patients further leads to intensive care unit (ICU) transfer or death which can be reduced by the use of prediction tools. The early warning scoring (EWS) system is a prediction tool used in monitoring medical patients in hospitals, hospital staying length, and inpatient mortality. The present study evaluated four different EWS systems for the prediction of patient survival. Method The present prospective observational study has analyzed 217 patients visiting the emergency department from November 2016 to November 2018, followed by demographic and clinical data collection. Modified Early Warning Score (MEWS), Triage Early Warning Score (TEWS), Leed's Early Warning Score (LEWS), and patient-at-risk scores (PARS) were assigned based upon body temperature, consciousness level, heart rate, blood pressure, respiratory rate, mobility, etc. Data was analyzed with the help of R 4.0.4 (R Foundation, Vienna, Austria) and Microsoft Excel (Microsoft, Redmond, Washington). Results Out of these 217 patients, 205 got shifted to a ward, and 12 died, amongst which the majority belonged to the 31-40 age group. Among patients admitted to ICU had a MEWS greater than 3, TEWS within the range 0 to 2 and 3 to 5, LEWS greater than 7, and PARS greater than 5 on the initial days of admission. The patients who died and those who were shifted to the ward showed significant differences in EWS. A significant association was observed between all the EWS and patient outcomes (p<0.001). Conclusion MEWS, TEWS, LEWS, and PARS were effective in the prediction of inpatient mortality as well as admission to the ICU. With the increase in the EWS, there was an increase in the duration of ICU stay and a decrease in chances of survival.

摘要

引言 住院患者临床状况的恶化会进一步导致转入重症监护病房(ICU)或死亡,而使用预测工具可以降低这种情况的发生。早期预警评分(EWS)系统是一种用于监测医院内科患者、住院时长和住院患者死亡率的预测工具。本研究评估了四种不同的EWS系统对患者生存情况的预测能力。

方法 本前瞻性观察性研究分析了2016年11月至2018年11月期间到急诊科就诊的217例患者,随后收集了人口统计学和临床数据。根据体温、意识水平、心率、血压、呼吸频率、活动能力等因素,分别赋予改良早期预警评分(MEWS)、分诊早期预警评分(TEWS)、利兹早期预警评分(LEWS)和患者风险评分(PARS)。借助R 4.0.4(R基金会,奥地利维也纳)和微软Excel(微软公司,华盛顿州雷德蒙德)对数据进行分析。

结果 在这217例患者中,205例转入病房,12例死亡,其中大多数属于31 - 40岁年龄组。入住ICU的患者在入院初期的MEWS大于3,TEWS在0至2以及3至5范围内,LEWS大于7,PARS大于5。死亡患者和转入病房的患者在EWS方面存在显著差异。所有EWS与患者结局之间均观察到显著相关性(p<0.001)。

结论 MEWS、TEWS、LEWS和PARS在预测住院患者死亡率以及入住ICU方面是有效的。随着EWS的增加,ICU住院时长增加,生存几率降低。

相似文献

5

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验