Yamashita Rikiya, Kapoor Tara, Alam Minhaj Nur, Galimzianova Alfiia, Syed Saad Ali, Ugur Akdogan Mete, Alkim Emel, Wentland Andrew Louis, Madhuripan Nikhil, Goff Daniel, Barbee Victoria, Sheybani Natasha Diba, Sagreiya Hersh, Rubin Daniel L, Desser Terry S
Departments of Biomedical Data Science (R.Y., T.K., M.N.A., A.G., M.U.A., E.A., N.D.S., H.S., D.L.R.) and Radiology (S.A.S., A.L.W., N.M., D.G., V.B., D.L.R., T.S.D.), Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA 94305.
Radiol Artif Intell. 2022 May 11;4(3):e210174. doi: 10.1148/ryai.210174. eCollection 2022 May.
To develop a deep learning-based risk stratification system for thyroid nodules using US cine images.
In this retrospective study, 192 biopsy-confirmed thyroid nodules (175 benign, 17 malignant) in 167 unique patients (mean age, 56 years ± 16 [SD], 137 women) undergoing cine US between April 2017 and May 2018 with American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS)-structured radiology reports were evaluated. A deep learning-based system that exploits the cine images obtained during three-dimensional volumetric thyroid scans and outputs malignancy risk was developed and compared, using fivefold cross-validation, against a two-dimensional (2D) deep learning-based model (Static-2DCNN), a radiomics-based model using cine images (Cine-Radiomics), and the ACR TI-RADS level, with histopathologic diagnosis as ground truth. The system was used to revise the ACR TI-RADS recommendation, and its diagnostic performance was compared against the original ACR TI-RADS.
The system achieved higher average area under the receiver operating characteristic curve (AUC, 0.88) than Static-2DCNN (0.72, = .03) and tended toward higher average AUC than Cine-Radiomics (0.78, = .16) and ACR TI-RADS level (0.80, = .21). The system downgraded recommendations for 92 benign and two malignant nodules and upgraded none. The revised recommendation achieved higher specificity (139 of 175, 79.4%) than the original ACR TI-RADS (47 of 175, 26.9%; < .001), with no difference in sensitivity (12 of 17, 71% and 14 of 17, 82%, respectively; = .63).
The risk stratification system using US cine images had higher diagnostic performance than prior models and improved specificity of ACR TI-RADS when used to revise ACR TI-RADS recommendation. Neural Networks, US, Abdomen/GI, Head/Neck, Thyroid, Computer Applications-3D, Oncology, Diagnosis, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN) . © RSNA, 2022.
利用超声动态图像开发一种基于深度学习的甲状腺结节风险分层系统。
在这项回顾性研究中,对2017年4月至2018年5月期间接受动态超声检查的167例独特患者(平均年龄56岁±16[标准差],137例女性)中的192个经活检证实的甲状腺结节(175个良性,17个恶性)进行了评估,这些结节的放射学报告采用美国放射学会(ACR)甲状腺影像报告和数据系统(TI-RADS)进行结构化。开发了一种基于深度学习的系统,该系统利用三维容积甲状腺扫描过程中获得的动态图像并输出恶性风险,并通过五重交叉验证,与基于二维(2D)深度学习的模型(静态2DCNN)、使用动态图像的基于影像组学的模型(动态影像组学)以及ACR TI-RADS分级进行比较,以组织病理学诊断作为金标准。该系统用于修订ACR TI-RADS推荐,并将其诊断性能与原始ACR TI-RADS进行比较。
该系统在受试者操作特征曲线下的平均面积(AUC,0.88)高于静态2DCNN(0.72,P = 0.03),并且平均AUC有高于动态影像组学(0.78,P = 0.16)和ACR TI-RADS分级(0.80,P = 0.21)的趋势。该系统对92个良性结节和2个恶性结节的推荐等级进行了下调,没有上调的情况。修订后的推荐比原始ACR TI-RADS具有更高的特异性(175个中的139个,79.4%)(175个中的47个,26.9%;P < 0.001),敏感性无差异(分别为17个中的12个,71%和17个中的14个,82%;P = 0.63)。
使用超声动态图像的风险分层系统在用于修订ACR TI-RADS推荐时,比先前的模型具有更高的诊断性能,并提高了ACR TI-RADS的特异性。神经网络、超声、腹部/胃肠道、头/颈、甲状腺、计算机应用 - 3D、肿瘤学、诊断、监督学习、迁移学习、卷积神经网络(CNN)。©RSNA,2022。