Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA.
Genetics. 2022 Jul 4;221(3). doi: 10.1093/genetics/iyac078.
A goal of modern neuroscience involves understanding how connections in the brain form and function. Such a knowledge is essential to inform how defects in the exquisite complexity of nervous system growth influence neurological disease. Studies of the nervous system in the fruit fly Drosophila melanogaster enabled the discovery of a wealth of molecular and genetic mechanisms underlying development of synapses-the specialized cell-to-cell connections that comprise the essential substrate for information flow and processing in the nervous system. For years, the major driver of knowledge was the neuromuscular junction due to its ease of examination. Analogous studies in the central nervous system lagged due to a lack of genetic accessibility of specific neuron classes, synaptic labels compatible with cell-type-specific access, and high resolution, quantitative imaging strategies. However, understanding how central synapses form remains a prerequisite to understanding brain development. In the last decade, a host of new tools and techniques extended genetic studies of synapse organization into central circuits to enhance our understanding of synapse formation, organization, and maturation. In this review, we consider the current state-of-the-field. We first discuss the tools, technologies, and strategies developed to visualize and quantify synapses in vivo in genetically identifiable neurons of the Drosophila central nervous system. Second, we explore how these tools enabled a clearer understanding of synaptic development and organization in the fly brain and the underlying molecular mechanisms of synapse formation. These studies establish the fly as a powerful in vivo genetic model that offers novel insights into neural development.
现代神经科学的目标之一是了解大脑中的连接是如何形成和发挥功能的。这种知识对于了解神经系统生长过程中的缺陷如何影响神经疾病至关重要。对果蝇黑腹果蝇的神经系统的研究,揭示了大量分子和遗传机制,这些机制是突触发育的基础,而突触是神经系统中信息流动和处理的基本基质。多年来,由于其易于检查,神经肌肉接头一直是知识的主要驱动力。由于缺乏特定神经元类别的遗传可及性、与细胞类型特异性可及性兼容的突触标记以及高分辨率、定量成像策略,中枢神经系统的类似研究进展缓慢。然而,了解中枢突触的形成仍然是理解大脑发育的前提。在过去的十年中,一系列新的工具和技术将突触组织的遗传研究扩展到中枢回路,以增强我们对突触形成、组织和成熟的理解。在这篇综述中,我们考虑了当前的研究现状。我们首先讨论了用于可视化和定量分析果蝇中枢神经系统中可遗传鉴定神经元体内突触的工具、技术和策略。其次,我们探讨了这些工具如何使我们更清楚地了解果蝇大脑中的突触发育和组织以及突触形成的潜在分子机制。这些研究确立了果蝇作为一种强大的体内遗传模型,为神经发育提供了新的见解。