Suppr超能文献

果蝇中枢突触形成和组织的遗传调控。

Genetic regulation of central synapse formation and organization in Drosophila melanogaster.

机构信息

Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA.

出版信息

Genetics. 2022 Jul 4;221(3). doi: 10.1093/genetics/iyac078.

Abstract

A goal of modern neuroscience involves understanding how connections in the brain form and function. Such a knowledge is essential to inform how defects in the exquisite complexity of nervous system growth influence neurological disease. Studies of the nervous system in the fruit fly Drosophila melanogaster enabled the discovery of a wealth of molecular and genetic mechanisms underlying development of synapses-the specialized cell-to-cell connections that comprise the essential substrate for information flow and processing in the nervous system. For years, the major driver of knowledge was the neuromuscular junction due to its ease of examination. Analogous studies in the central nervous system lagged due to a lack of genetic accessibility of specific neuron classes, synaptic labels compatible with cell-type-specific access, and high resolution, quantitative imaging strategies. However, understanding how central synapses form remains a prerequisite to understanding brain development. In the last decade, a host of new tools and techniques extended genetic studies of synapse organization into central circuits to enhance our understanding of synapse formation, organization, and maturation. In this review, we consider the current state-of-the-field. We first discuss the tools, technologies, and strategies developed to visualize and quantify synapses in vivo in genetically identifiable neurons of the Drosophila central nervous system. Second, we explore how these tools enabled a clearer understanding of synaptic development and organization in the fly brain and the underlying molecular mechanisms of synapse formation. These studies establish the fly as a powerful in vivo genetic model that offers novel insights into neural development.

摘要

现代神经科学的目标之一是了解大脑中的连接是如何形成和发挥功能的。这种知识对于了解神经系统生长过程中的缺陷如何影响神经疾病至关重要。对果蝇黑腹果蝇的神经系统的研究,揭示了大量分子和遗传机制,这些机制是突触发育的基础,而突触是神经系统中信息流动和处理的基本基质。多年来,由于其易于检查,神经肌肉接头一直是知识的主要驱动力。由于缺乏特定神经元类别的遗传可及性、与细胞类型特异性可及性兼容的突触标记以及高分辨率、定量成像策略,中枢神经系统的类似研究进展缓慢。然而,了解中枢突触的形成仍然是理解大脑发育的前提。在过去的十年中,一系列新的工具和技术将突触组织的遗传研究扩展到中枢回路,以增强我们对突触形成、组织和成熟的理解。在这篇综述中,我们考虑了当前的研究现状。我们首先讨论了用于可视化和定量分析果蝇中枢神经系统中可遗传鉴定神经元体内突触的工具、技术和策略。其次,我们探讨了这些工具如何使我们更清楚地了解果蝇大脑中的突触发育和组织以及突触形成的潜在分子机制。这些研究确立了果蝇作为一种强大的体内遗传模型,为神经发育提供了新的见解。

相似文献

2
Synapse development and maturation at the drosophila neuromuscular junction.
Neural Dev. 2020 Aug 2;15(1):11. doi: 10.1186/s13064-020-00147-5.
4
Development of the embryonic neuromuscular synapse of Drosophila melanogaster.
J Neurosci. 1993 Jan;13(1):144-66. doi: 10.1523/JNEUROSCI.13-01-00144.1993.
5
The drosophila neuromuscular junction: a model system for studying synaptic development and function.
Annu Rev Neurosci. 1996;19:545-75. doi: 10.1146/annurev.ne.19.030196.002553.
6
Cell-type-Specific Patterned Stimulus-Independent Neuronal Activity in the Drosophila Visual System during Synapse Formation.
Neuron. 2019 Mar 6;101(5):894-904.e5. doi: 10.1016/j.neuron.2019.01.008. Epub 2019 Jan 30.
7
A connectome and analysis of the adult central brain.
Elife. 2020 Sep 7;9:e57443. doi: 10.7554/eLife.57443.
8
Structural and Functional Synaptic Plasticity Induced by Convergent Synapse Loss in the Neuromuscular Circuit.
J Neurosci. 2021 Feb 17;41(7):1401-1417. doi: 10.1523/JNEUROSCI.1492-20.2020. Epub 2021 Jan 5.
9
New approaches for studying synaptic development, function, and plasticity using Drosophila as a model system.
J Neurosci. 2013 Nov 6;33(45):17560-8. doi: 10.1523/JNEUROSCI.3261-13.2013.
10
Analysis of neuromuscular junctions: histology and in vivo imaging.
Methods Mol Biol. 2008;420:239-51. doi: 10.1007/978-1-59745-583-1_14.

引用本文的文献

3
SynLight: a dicistronic strategy for simultaneous active zone and cell labeling in the nervous system.
bioRxiv. 2023 Jul 17:2023.07.17.549367. doi: 10.1101/2023.07.17.549367.
4
Early Draper-mediated glial refinement of neuropil architecture and synapse number in the Drosophila antennal lobe.
Front Cell Neurosci. 2023 Jun 2;17:1166199. doi: 10.3389/fncel.2023.1166199. eCollection 2023.
5
A conditional strategy for cell-type-specific labeling of endogenous excitatory synapses in .
Cell Rep Methods. 2023 May 11;3(5):100477. doi: 10.1016/j.crmeth.2023.100477. eCollection 2023 May 22.
6
Drosophila as a Model for Human Viral Neuroinfections.
Cells. 2022 Aug 29;11(17):2685. doi: 10.3390/cells11172685.

本文引用的文献

1
A pair of commissural command neurons induces wing grooming.
iScience. 2022 Feb 3;25(2):103792. doi: 10.1016/j.isci.2022.103792. eCollection 2022 Feb 18.
2
A conditional GABAergic synaptic vesicle marker for Drosophila.
J Neurosci Methods. 2022 Apr 15;372:109540. doi: 10.1016/j.jneumeth.2022.109540. Epub 2022 Feb 24.
3
A discrete neuronal population coordinates brain-wide developmental activity.
Nature. 2022 Feb;602(7898):639-646. doi: 10.1038/s41586-022-04406-9. Epub 2022 Feb 9.
4
A conditional glutamatergic synaptic vesicle marker for Drosophila.
G3 (Bethesda). 2022 Mar 4;12(3). doi: 10.1093/g3journal/jkab453.
5
Brain connectivity inversely scales with developmental temperature in Drosophila.
Cell Rep. 2021 Dec 21;37(12):110145. doi: 10.1016/j.celrep.2021.110145.
6
State-of-the-art CRISPR for in vivo and cell-based studies in Drosophila.
Trends Genet. 2022 May;38(5):437-453. doi: 10.1016/j.tig.2021.11.006. Epub 2021 Dec 18.
9
SNARE Regulatory Proteins in Synaptic Vesicle Fusion and Recycling.
Front Mol Neurosci. 2021 Aug 6;14:733138. doi: 10.3389/fnmol.2021.733138. eCollection 2021.
10
Sleep deprivation results in diverse patterns of synaptic scaling across the Drosophila mushroom bodies.
Curr Biol. 2021 Aug 9;31(15):3248-3261.e3. doi: 10.1016/j.cub.2021.05.018. Epub 2021 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验