Suppr超能文献

一个离散的神经元群体协调全脑发育活动。

A discrete neuronal population coordinates brain-wide developmental activity.

机构信息

Department of Biological Chemistry, Medical Scientist Training Program, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA.

Molecular, Cellular, and Integrative Physiology Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA.

出版信息

Nature. 2022 Feb;602(7898):639-646. doi: 10.1038/s41586-022-04406-9. Epub 2022 Feb 9.

Abstract

In vertebrates, stimulus-independent activity accompanies neural circuit maturation throughout the developing brain. The recent discovery of similar activity in the developing Drosophila central nervous system suggests that developmental activity is fundamental to the assembly of complex brains. How such activity is coordinated across disparate brain regions to influence synaptic development at the level of defined cell types is not well understood. Here we show that neurons expressing the cation channel transient receptor potential gamma (Trpγ) relay and pattern developmental activity throughout the Drosophila brain. In trpγ mutants, activity is attenuated globally, and both patterns of activity and synapse structure are altered in a cell-type-specific manner. Less than 2% of the neurons in the brain express Trpγ. These neurons arborize throughout the brain, and silencing or activating them leads to loss or gain of brain-wide activity. Together, these results indicate that this small population of neurons coordinates brain-wide developmental activity. We propose that stereotyped patterns of developmental activity are driven by a discrete, genetically specified network to instruct neural circuit assembly at the level of individual cells and synapses. This work establishes the fly brain as an experimentally tractable system for studying how activity contributes to synapse and circuit formation.

摘要

在脊椎动物中,刺激独立性活动伴随着整个发育大脑中神经回路的成熟。最近在发育中的果蝇中枢神经系统中发现了类似的活动,这表明发育活动对于复杂大脑的组装是基本的。这种活动如何在不同的脑区之间协调,以影响特定细胞类型的突触发育,目前还不是很清楚。在这里,我们表明表达阳离子通道瞬时受体潜力γ(Trpγ)的神经元在果蝇大脑中传递和塑造发育活动。在 trpγ 突变体中,活动在全局上减弱,并且活动模式和突触结构都以细胞类型特异性的方式发生改变。在大脑中不到 2%的神经元表达 Trpγ。这些神经元在整个大脑中分支,沉默或激活它们会导致大脑活动的丧失或获得。总之,这些结果表明,这一小部分神经元协调大脑的发育活动。我们提出,发育活动的刻板模式是由离散的、基因特异性的网络驱动的,以指导单个细胞和突触水平的神经回路组装。这项工作确立了果蝇大脑作为研究活动如何促进突触和回路形成的实验可处理系统。

相似文献

1
A discrete neuronal population coordinates brain-wide developmental activity.
Nature. 2022 Feb;602(7898):639-646. doi: 10.1038/s41586-022-04406-9. Epub 2022 Feb 9.
2
Cell-type-Specific Patterned Stimulus-Independent Neuronal Activity in the Drosophila Visual System during Synapse Formation.
Neuron. 2019 Mar 6;101(5):894-904.e5. doi: 10.1016/j.neuron.2019.01.008. Epub 2019 Jan 30.
3
Developmental neural activity requires neuron-astrocyte interactions.
Dev Neurobiol. 2022 Apr;82(3):235-244. doi: 10.1002/dneu.22870. Epub 2022 Mar 11.
4
Synaptic Development in Diverse Olfactory Neuron Classes Uses Distinct Temporal and Activity-Related Programs.
J Neurosci. 2023 Jan 4;43(1):28-55. doi: 10.1523/JNEUROSCI.0884-22.2022. Epub 2022 Nov 29.
6
A connectome and analysis of the adult central brain.
Elife. 2020 Sep 7;9:e57443. doi: 10.7554/eLife.57443.
7
Activity regulates brain development in the fly.
Curr Opin Genet Dev. 2020 Dec;65:8-13. doi: 10.1016/j.gde.2020.04.005. Epub 2020 Jun 25.
8
Transcriptional Programs of Circuit Assembly in the Drosophila Visual System.
Neuron. 2020 Dec 23;108(6):1045-1057.e6. doi: 10.1016/j.neuron.2020.10.006. Epub 2020 Oct 29.
9
Activity-Dependent Remodeling of Olfactory Sensory Neuron Brain Innervation during an Early-Life Critical Period.
J Neurosci. 2019 Apr 17;39(16):2995-3012. doi: 10.1523/JNEUROSCI.2223-18.2019. Epub 2019 Feb 12.
10
Synapse formation in developing neural circuits.
Curr Top Dev Biol. 2009;87:53-79. doi: 10.1016/S0070-2153(09)01202-2.

引用本文的文献

1
Regulatory logic of neuronal identity specification in .
bioRxiv. 2025 Sep 3:2025.09.01.673531. doi: 10.1101/2025.09.01.673531.
2
Four neurons pattern brain-wide developmental activity through neuropeptide signaling.
bioRxiv. 2025 Jun 28:2025.06.26.661770. doi: 10.1101/2025.06.26.661770.
4
Neuronal parts list and wiring diagram for a visual system.
Nature. 2024 Oct;634(8032):166-180. doi: 10.1038/s41586-024-07981-1. Epub 2024 Oct 2.
5
Lagging Brain Gene Expression Patterns of Drosophila melanogaster Young Adult Males Confound Comparisons Between Sexes.
Mol Neurobiol. 2025 Mar;62(3):2955-2972. doi: 10.1007/s12035-024-04427-7. Epub 2024 Aug 28.
6
Network state transitions during cortical development.
Nat Rev Neurosci. 2024 Aug;25(8):535-552. doi: 10.1038/s41583-024-00824-y. Epub 2024 May 23.
7
Synaptic promiscuity in brain development.
Curr Biol. 2024 Feb 5;34(3):R102-R116. doi: 10.1016/j.cub.2023.12.037.
8
Functional neuronal circuits emerge in the absence of developmental activity.
Nat Commun. 2024 Jan 8;15(1):364. doi: 10.1038/s41467-023-44681-2.
9
Two-photon calcium imaging of neuronal activity.
Nat Rev Methods Primers. 2022;2(1). doi: 10.1038/s43586-022-00147-1. Epub 2022 Sep 1.
10
Input density tunes Kenyon cell sensory responses in the Drosophila mushroom body.
Curr Biol. 2023 Jul 10;33(13):2742-2760.e12. doi: 10.1016/j.cub.2023.05.064. Epub 2023 Jun 21.

本文引用的文献

1
Neuronal diversity and convergence in a visual system developmental atlas.
Nature. 2021 Jan;589(7840):88-95. doi: 10.1038/s41586-020-2879-3. Epub 2020 Nov 4.
2
Transcriptional Programs of Circuit Assembly in the Drosophila Visual System.
Neuron. 2020 Dec 23;108(6):1045-1057.e6. doi: 10.1016/j.neuron.2020.10.006. Epub 2020 Oct 29.
3
Comparative Connectomics Reveals How Partner Identity, Location, and Activity Specify Synaptic Connectivity in Drosophila.
Neuron. 2021 Jan 6;109(1):105-122.e7. doi: 10.1016/j.neuron.2020.10.004. Epub 2020 Oct 28.
4
SPARC enables genetic manipulation of precise proportions of cells.
Nat Neurosci. 2020 Sep;23(9):1168-1175. doi: 10.1038/s41593-020-0668-9. Epub 2020 Jul 20.
6
Cell-type-Specific Patterned Stimulus-Independent Neuronal Activity in the Drosophila Visual System during Synapse Formation.
Neuron. 2019 Mar 6;101(5):894-904.e5. doi: 10.1016/j.neuron.2019.01.008. Epub 2019 Jan 30.
7
Structural aspects of plasticity in the nervous system of Drosophila.
Neural Dev. 2018 Jul 1;13(1):14. doi: 10.1186/s13064-018-0111-z.
9
Long-range projections coordinate distributed brain-wide neural activity with a specific spatiotemporal profile.
Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):E8306-E8315. doi: 10.1073/pnas.1616361113. Epub 2016 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验