Computational Modeling & Simulation Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
J Chem Theory Comput. 2022 Jun 14;18(6):3593-3606. doi: 10.1021/acs.jctc.2c00010. Epub 2022 Jun 2.
Modeling of diffusion of adsorbates through porous materials with atomistic molecular dynamics (MD) can be a challenging task if the flexibility of the adsorbent needs to be included. This is because potentials need to be developed that accurately account for the motion of the adsorbent in response to the presence of adsorbate molecules. In this work, we show that it is possible to use accurate machine learning atomistic potentials for metal-organic frameworks in concert with classical potentials for adsorbates to accurately compute diffusivities though a hybrid potential approach. As a proof-of-concept, we have developed an accurate deep learning potential (DP) for UiO-66, a metal-organic framework, and used this DP to perform hybrid potential simulations, modeling diffusion of neon and xenon through the crystal. The adsorbate-adsorbate interactions were modeled with Lennard-Jones (LJ) potentials, the adsorbent-adsorbent interactions were described by the DP, and the adsorbent-adsorbate interactions used LJ cross-interactions. Thus, our hybrid potential allows for adsorbent-adsorbate interactions with classical potentials but models the response of the adsorbent to the presence of the adsorbate through near-DFT accuracy DPs. This hybrid approach does not require refitting the DP for new adsorbates. We calculated self-diffusion coefficients for Ne in UiO-66 from DFT-MD, our hybrid DP/LJ approach, and from two different classical potentials for UiO-66. Our DP/LJ results are in excellent agreement with DFT-MD. We modeled diffusion of Xe in UiO-66 with DP/LJ and a classical potential. Diffusion of Xe in UiO-66 is about a factor of 30 slower than that of Ne, so it is not computationally feasible to compute Xe diffusion with DFT-MD. Our hybrid DP-classical potential approach can be applied to other MOFs and other adsorbates, making it possible to use an accurate DP generated from DFT simulations of an empty adsorbent in concert with existing classical potentials for adsorbates to model adsorption and diffusion within the porous material, including adsorbate-induced changes to the framework.
如果需要考虑吸附剂的柔韧性,那么通过原子分子动力学 (MD) 对多孔材料中吸附物的扩散进行建模可能是一项具有挑战性的任务。这是因为需要开发准确的势函数来准确描述吸附剂在吸附物分子存在下的运动。在这项工作中,我们展示了可以使用针对金属有机骨架 (MOF) 的准确机器学习原子势函数,结合针对吸附物的经典势函数,通过混合势方法准确计算通过多孔材料的扩散率。作为概念验证,我们为金属有机骨架 UiO-66 开发了一种准确的深度学习势 (DP),并使用此 DP 进行混合势模拟,模拟氖和氙通过晶体的扩散。吸附物-吸附物相互作用采用 Lennard-Jones (LJ) 势描述,吸附剂-吸附剂相互作用由 DP 描述,吸附剂-吸附物相互作用采用 LJ 交叉相互作用。因此,我们的混合势允许使用经典势来描述吸附物-吸附物相互作用,但通过接近 DFT 精度的 DP 来模拟吸附剂对吸附物存在的响应。这种混合方法不需要为新的吸附物重新拟合 DP。我们从 DFT-MD、我们的混合 DP/LJ 方法以及两种不同的 UiO-66 经典势中计算了 Ne 在 UiO-66 中的自扩散系数。我们的 DP/LJ 结果与 DFT-MD 非常吻合。我们使用 DP/LJ 和经典势对 Xe 在 UiO-66 中的扩散进行了建模。Xe 在 UiO-66 中的扩散速度比 Ne 慢约 30 倍,因此用 DFT-MD 计算 Xe 扩散速度在计算上是不可行的。我们的混合 DP-经典势方法可以应用于其他 MOF 和其他吸附物,从而可以使用从空吸附剂的 DFT 模拟生成的准确 DP 与现有的吸附物经典势结合使用,来模拟多孔材料中的吸附和扩散,包括吸附物诱导的骨架变化。