Suppr超能文献

用于分子分离的混合基质金属有机骨架膜的合理设计。

Rational design of mixed-matrix metal-organic framework membranes for molecular separations.

机构信息

Division of Physical Science and Engineering, Advanced Membrane and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.

Division of Physical Science and Engineering, Advanced Membrane and Porous Materials Center, Functional Materials Design, Discovery and Development (FMD3), KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia.

出版信息

Science. 2022 Jun 3;376(6597):1080-1087. doi: 10.1126/science.abe0192. Epub 2022 Jun 2.

Abstract

Conventional separation technologies to separate valuable commodities are energy intensive, consuming 15% of the worldwide energy. Mixed-matrix membranes, combining processable polymers and selective adsorbents, offer the potential to deploy adsorbent distinct separation properties into processable matrix. We report the rational design and construction of a highly efficient, mixed-matrix metal-organic framework membrane based on three interlocked criteria: (i) a fluorinated metal-organic framework, AlFFIVE-1-Ni, as a molecular sieve adsorbent that selectively enhances hydrogen sulfide and carbon dioxide diffusion while excluding methane; (ii) tailoring crystal morphology into nanosheets with maximally exposed (001) facets; and (iii) in-plane alignment of (001) nanosheets in polymer matrix and attainment of [001]-oriented membrane. The membrane demonstrated exceptionally high hydrogen sulfide and carbon dioxide separation from natural gas under practical working conditions. This approach offers great potential to translate other key adsorbents into processable matrix.

摘要

传统的分离技术来分离有价值的商品是能源密集型的,消耗了全球能源的 15%。混合基质膜将可加工聚合物和选择性吸附剂结合在一起,为将吸附剂的独特分离性能应用于可加工基质提供了可能。我们报告了一种高效的混合基质金属有机骨架膜的合理设计和构建,该膜基于三个互锁的标准:(i)氟化金属有机骨架 AlFFIVE-1-Ni 作为分子筛吸附剂,选择性增强硫化氢和二氧化碳的扩散,同时排除甲烷;(ii)将晶体形态剪裁成具有最大暴露(001)面的纳米片;以及(iii)在聚合物基质中平面排列(001)纳米片并实现[001]取向膜。该膜在实际工作条件下从天然气中表现出极高的硫化氢和二氧化碳分离性能。这种方法为将其他关键吸附剂转化为可加工基质提供了巨大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验