Balkenende Diederik W R, Winkler Sally M, Li Yiran, Messersmith Phillip B
Departments of Bioengineering and Materials Science and Engineering, University of California Berkeley, Berkeley, California 94720-1760, United States.
UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, California 94720, United States.
ACS Macro Lett. 2020 Oct 20;9(10):1439-1445. doi: 10.1021/acsmacrolett.0c00520. Epub 2020 Sep 21.
Here we introduce a tissue-adhesive patch with orthogonal cohesive and adhesive chemistries; supramolecular ureido-4-pyrimidinone (UPy) cross-links provide cohesive strength, and catechols provide mussel-inspired tissue adhesion. In the development of tissue-adhesive biomaterials, prior research has focused on forming strong adhesive interfaces in wet conditions, leaving the use of supramolecular cross-links for cohesive strength underexplored. In developing this adhesive patch, the influence of the comonomers' composition and amphiphilicity on adhesion was investigated by lap shear adhesion to wet tissue. We determined failed lap joints' failure mechanism using catechol-specific Arnow's stain and identified formulations with improved cohesive strength. The adhesive materials were cytocompatible in mammalian cell conditioned media viability studies. We found that using orthogonal motifs to independently control adhesives' cohesive and adhesive strengths resulted in stronger tissue adhesion. The design principles presented here advance the development of wet tissue adhesives and could allow for the future design of biomaterials with desirable stimuli-responsive properties.
在此,我们介绍一种具有正交内聚和粘附化学性质的组织粘附贴片;超分子脲基-4-嘧啶酮(UPy)交联提供内聚强度,儿茶酚提供受贻贝启发的组织粘附力。在组织粘附生物材料的开发中,先前的研究主要集中在在潮湿条件下形成强粘附界面,而超分子交联用于内聚强度的应用尚未得到充分探索。在开发这种粘附贴片时,通过对湿组织的搭接剪切粘附力研究了共聚单体的组成和两亲性对粘附力的影响。我们使用儿茶酚特异性的阿诺氏染色法确定了失效搭接接头的失效机制,并确定了具有提高的内聚强度的配方。在哺乳动物细胞条件培养基活力研究中,这些粘附材料具有细胞相容性。我们发现,使用正交基序独立控制粘合剂的内聚和粘附强度会导致更强的组织粘附力。这里提出的设计原则推动了湿组织粘合剂的发展,并可能为未来具有理想刺激响应特性的生物材料设计提供可能。