Department of Biomedical Engineering and Healthy Systems, KTH Royal Institute of Technology, Huddinge SE-14157, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Karolinska Universitetssjukhuset, Solna, Stockholm SE-17176, Sweden.
Department of Biomedical Engineering and Healthy Systems, KTH Royal Institute of Technology, Huddinge SE-14157, Sweden.
Med Image Anal. 2022 Aug;80:102491. doi: 10.1016/j.media.2022.102491. Epub 2022 May 25.
Segmentation of lung pathology in Computed Tomography (CT) images is of great importance for lung disease screening. However, the presence of different types of lung pathologies with a wide range of heterogeneities in size, shape, location, and texture, on one side, and their visual similarity with respect to surrounding tissues, on the other side, make it challenging to perform reliable automatic lesion segmentation. To leverage segmentation performance, we propose a deep learning framework comprising a Normal Appearance Autoencoder (NAA) model to learn the distribution of healthy lung regions and reconstruct pathology-free images from the corresponding pathological inputs by replacing the pathological regions with the characteristics of healthy tissues. Detected regions that represent prior information regarding the shape and location of pathologies are then integrated into a segmentation network to guide the attention of the model into more meaningful delineations. The proposed pipeline was tested on three types of lung pathologies, including pulmonary nodules, Non-Small Cell Lung Cancer (NSCLC), and Covid-19 lesion on five comprehensive datasets. The results show the superiority of the proposed prior model, which outperformed the baseline segmentation models in all the cases with significant margins. On average, adding the prior model improved the Dice coefficient for the segmentation of lung nodules by 0.038, NSCLCs by 0.101, and Covid-19 lesions by 0.041. We conclude that the proposed NAA model produces reliable prior knowledge regarding the lung pathologies, and integrating such knowledge into a prior segmentation network leads to more accurate delineations.
肺 CT 图像中肺病变的分割对于肺病筛查非常重要。然而,由于各种类型的肺病变在大小、形状、位置和纹理等方面存在广泛的异质性,而另一方面,它们与周围组织在视觉上又非常相似,这使得进行可靠的自动病变分割具有挑战性。为了提高分割性能,我们提出了一个深度学习框架,包括一个正常外观自动编码器(NAA)模型,该模型用于学习健康肺区域的分布,并通过用健康组织的特征替换病变区域,从相应的病变输入中重建无病变的图像。然后,将表示病变形状和位置先验信息的检测区域集成到分割网络中,以引导模型更加关注有意义的分割。所提出的方法在五个综合数据集上的三种类型的肺病变(包括肺结节、非小细胞肺癌(NSCLC)和新冠病毒肺炎病变)上进行了测试。结果表明,所提出的先验模型具有优越性,在所有情况下都优于基线分割模型,且具有显著的优势。平均而言,添加先验模型将肺结节分割的 Dice 系数提高了 0.038,将 NSCLC 分割的 Dice 系数提高了 0.101,将新冠病毒肺炎病变分割的 Dice 系数提高了 0.041。我们得出结论,所提出的 NAA 模型能够生成关于肺病变的可靠先验知识,并且将这种知识集成到先验分割网络中可以实现更准确的分割。