Suppr超能文献

基于形状先验约束的深度学习网络用于医学图像分割。

Shape prior-constrained deep learning network for medical image segmentation.

机构信息

School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.

School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China; School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong 266061, China.

出版信息

Comput Biol Med. 2024 Sep;180:108932. doi: 10.1016/j.compbiomed.2024.108932. Epub 2024 Jul 29.

Abstract

We propose a shape prior representation-constrained multi-scale features fusion segmentation network for medical image segmentation, including training and testing stages. The novelty of our training framework lies in two modules comprised of the shape prior constraint and the multi-scale features fusion. The shape prior learning model is embedded into a segmentation neural network to solve the problems of low contrast and neighboring organs with intensities similar to the target organ. The latter can provide both local and global contexts to address the issues of large variations in patient postures as well as organ's shape. In the testing stage, we propose a circular collaboration framework strategy which combines a shape generator auto-encoder network model with a segmentation network model, allowing the two models to collaborate with each other, resulting in a cooperative effect that leads to accurate segmentations. Our proposed method is evaluated and demonstrated on the ACDC MICCAI'17 Challenge Dataset, CT scans datasets, namely, in COVID-19 CT lung, and LiTS2017 liver from three different datasets, and its results are compared with the recent state of the art in these areas. Our method ranked 1st on the ACDC Dataset in terms of Dice score and achieved very competitive performance on COVID-19 CT lung and LiTS2017 liver segmentation.

摘要

我们提出了一种形状先验表示约束的多尺度特征融合分割网络,用于医学图像分割,包括训练和测试阶段。我们的训练框架的新颖之处在于包含形状先验约束和多尺度特征融合的两个模块。形状先验学习模型被嵌入到分割神经网络中,以解决对比度低和与目标器官强度相似的相邻器官的问题。后者可以提供局部和全局上下文,以解决患者姿势和器官形状变化大的问题。在测试阶段,我们提出了一种圆形协作框架策略,将形状生成自动编码器网络模型与分割网络模型相结合,使两个模型相互协作,产生协同效果,从而实现准确的分割。我们的方法在 ACDC MICCAI'17 挑战赛数据集、CT 扫描数据集(即 COVID-19 CT 肺部和 LiTS2017 肝脏)上进行了评估和验证,并与该领域的最新技术进行了比较。在 ACDC 数据集上,我们的方法在 Dice 得分方面排名第一,在 COVID-19 CT 肺部和 LiTS2017 肝脏分割方面也取得了非常有竞争力的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验