Applied Oral Sciences and Community Dental Care, The University of Hong Kong, Hong Kong S.A.R., PR China.
Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., PR China.
Comput Biol Med. 2022 Oct;149:106033. doi: 10.1016/j.compbiomed.2022.106033. Epub 2022 Aug 27.
Medical image segmentation is a key initial step in several therapeutic applications. While most of the automatic segmentation models are supervised, which require a well-annotated paired dataset, we introduce a novel annotation-free pipeline to perform segmentation of COVID-19 CT images. Our pipeline consists of three main subtasks: automatically generating a 3D pseudo-mask in self-supervised mode using a generative adversarial network (GAN), leveraging the quality of the pseudo-mask, and building a multi-objective segmentation model to predict lesions. Our proposed 3D GAN architecture removes infected regions from COVID-19 images and generates synthesized healthy images while keeping the 3D structure of the lung the same. Then, a 3D pseudo-mask is generated by subtracting the synthesized healthy images from the original COVID-19 CT images. We enhanced pseudo-masks using a contrastive learning approach to build a region-aware segmentation model to focus more on the infected area. The final segmentation model can be used to predict lesions in COVID-19 CT images without any manual annotation at the pixel level. We show that our approach outperforms the existing state-of-the-art unsupervised and weakly-supervised segmentation techniques on three datasets by a reasonable margin. Specifically, our method improves the segmentation results for the CT images with low infection by increasing sensitivity by 20% and the dice score up to 4%. The proposed pipeline overcomes some of the major limitations of existing unsupervised segmentation approaches and opens up a novel horizon for different applications of medical image segmentation.
医学图像分割是多个治疗应用的关键初始步骤。虽然大多数自动分割模型都是基于监督学习的,需要有标注好的配对数据集,但我们引入了一种新颖的无标注管道,用于对 COVID-19 CT 图像进行分割。我们的管道由三个主要子任务组成:使用生成对抗网络 (GAN) 在自监督模式下自动生成 3D 伪掩模,利用伪掩模的质量,并构建一个多目标分割模型来预测病变。我们提出的 3D GAN 架构从 COVID-19 图像中去除感染区域,并生成合成的健康图像,同时保持肺部的 3D 结构不变。然后,通过从原始 COVID-19 CT 图像中减去合成的健康图像来生成 3D 伪掩模。我们使用对比学习方法增强伪掩模,构建一个具有区域感知的分割模型,以更关注感染区域。最终的分割模型可以用于预测 COVID-19 CT 图像中的病变,而无需在像素级别进行任何手动标注。我们表明,我们的方法在三个数据集上优于现有的无监督和弱监督分割技术,具有合理的优势。具体来说,我们的方法通过提高 20%的灵敏度和高达 4%的骰子分数,提高了低感染 CT 图像的分割结果。所提出的管道克服了现有无监督分割方法的一些主要限制,并为医学图像分割的不同应用开辟了新的前景。