Suppr超能文献

γ-分泌酶通过切割 Wnt 受体促进果蝇突触后发育。

γ-secretase promotes Drosophila postsynaptic development through the cleavage of a Wnt receptor.

机构信息

Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA.

Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA.

出版信息

Dev Cell. 2022 Jul 11;57(13):1643-1660.e7. doi: 10.1016/j.devcel.2022.05.006. Epub 2022 Jun 1.

Abstract

Developing synapses mature through the recruitment of specific proteins that stabilize presynaptic and postsynaptic structure and function. Wnt ligands signaling via Frizzled (Fz) receptors play many crucial roles in neuronal and synaptic development, but whether and how Wnt and Fz influence synaptic maturation is incompletely understood. Here, we show that Fz2 receptor cleavage via the γ-secretase complex is required for postsynaptic development and maturation. In the absence of γ-secretase, Drosophila neuromuscular synapses fail to recruit postsynaptic scaffolding and cytoskeletal proteins, leading to behavioral deficits. Introducing presenilin mutations linked to familial early-onset Alzheimer's disease into flies leads to synaptic maturation phenotypes that are identical to those seen in null alleles. This conserved role for γ-secretase in synaptic maturation and postsynaptic development highlights the importance of Fz2 cleavage and suggests that receptor processing by proteins linked to neurodegeneration may be a shared mechanism with aspects of synaptic development.

摘要

形成中的突触通过募集特定的蛋白质而成熟,这些蛋白质可稳定突触前和突触后的结构和功能。通过 Frizzled(Fz)受体进行信号传递的 Wnt 配体在神经元和突触发育中发挥着许多关键作用,但 Wnt 和 Fz 是否以及如何影响突触成熟还不完全清楚。在这里,我们发现 Fz2 受体通过 γ-分泌酶复合物的切割对于突触后发育和成熟是必需的。在没有 γ-分泌酶的情况下,果蝇的神经肌肉突触无法募集突触后支架和细胞骨架蛋白,导致行为缺陷。将与家族性早发性阿尔茨海默病相关的早老素突变引入果蝇中,会导致与缺失突变体中观察到的相同的突触成熟表型。γ-分泌酶在突触成熟和突触后发育中的这种保守作用突出了 Fz2 切割的重要性,并表明与神经退行性疾病相关的蛋白质对受体的加工可能是与突触发育某些方面共享的机制。

相似文献

1
γ-secretase promotes Drosophila postsynaptic development through the cleavage of a Wnt receptor.
Dev Cell. 2022 Jul 11;57(13):1643-1660.e7. doi: 10.1016/j.devcel.2022.05.006. Epub 2022 Jun 1.
2
Activity-mediated synapse formation a role for Wnt-Fz signaling.
Curr Top Dev Biol. 2011;97:119-36. doi: 10.1016/B978-0-12-385975-4.00011-5.
3
Presenilin/γ-secretase regulates neurexin processing at synapses.
PLoS One. 2011 Apr 29;6(4):e19430. doi: 10.1371/journal.pone.0019430.
4
Two classes of matrix metalloproteinases reciprocally regulate synaptogenesis.
Development. 2016 Jan 1;143(1):75-87. doi: 10.1242/dev.124461. Epub 2015 Nov 24.
5
An Evolutionarily Conserved Role of Presenilin in Neuronal Protection in the Aging Brain.
Genetics. 2017 Jul;206(3):1479-1493. doi: 10.1534/genetics.116.196881. Epub 2017 May 11.
6
Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless.
Cell. 2009 Oct 16;139(2):393-404. doi: 10.1016/j.cell.2009.07.051.
8
Super-resolution microscopy reveals γ-secretase at both sides of the neuronal synapse.
Acta Neuropathol Commun. 2016 Mar 31;4:29. doi: 10.1186/s40478-016-0296-5.
9
The nuclear import of Frizzled2-C by Importins-beta11 and alpha2 promotes postsynaptic development.
Nat Neurosci. 2010 Aug;13(8):935-43. doi: 10.1038/nn.2593. Epub 2010 Jul 4.
10
Shank Modulates Postsynaptic Wnt Signaling to Regulate Synaptic Development.
J Neurosci. 2016 May 25;36(21):5820-32. doi: 10.1523/JNEUROSCI.4279-15.2016.

引用本文的文献

2
Dynein-driven regulation of postsynaptic membrane architecture and synaptic function.
J Cell Sci. 2025 Mar 1;138(5). doi: 10.1242/jcs.263844. Epub 2025 Mar 12.
4
Postsynaptic BMP signaling regulates myonuclear properties in Drosophila larval muscles.
J Cell Biol. 2025 Jan 6;224(1). doi: 10.1083/jcb.202404052. Epub 2024 Oct 30.
5
ESCRT disruption provides evidence against trans-synaptic signaling via extracellular vesicles.
J Cell Biol. 2024 Sep 2;223(9). doi: 10.1083/jcb.202405025. Epub 2024 Jun 6.
6
ESCRT disruption provides evidence against transsynaptic signaling functions for extracellular vesicles.
bioRxiv. 2024 May 5:2023.04.22.537920. doi: 10.1101/2023.04.22.537920.
8
Postsynaptic BMP signaling regulates myonuclear properties in larval muscles.
bioRxiv. 2024 Apr 11:2024.04.10.588944. doi: 10.1101/2024.04.10.588944.
9
The CHD family chromatin remodeling enzyme, Kismet, promotes both clathrin-mediated and activity-dependent bulk endocytosis.
PLoS One. 2024 Mar 21;19(3):e0300255. doi: 10.1371/journal.pone.0300255. eCollection 2024.
10
Neuronal LRP4 directs the development, maturation, and cytoskeletal organization of peripheral synapses.
bioRxiv. 2023 Nov 8:2023.11.03.564481. doi: 10.1101/2023.11.03.564481.

本文引用的文献

1
ALS2 regulates endosomal trafficking, postsynaptic development, and neuronal survival.
J Cell Biol. 2021 May 3;220(5). doi: 10.1083/jcb.202007112.
2
Synapse development and maturation at the drosophila neuromuscular junction.
Neural Dev. 2020 Aug 2;15(1):11. doi: 10.1186/s13064-020-00147-5.
3
Huntington's disease alters human neurodevelopment.
Science. 2020 Aug 14;369(6505):787-793. doi: 10.1126/science.aax3338. Epub 2020 Jul 16.
4
The substrate repertoire of γ-secretase/presenilin.
Semin Cell Dev Biol. 2020 Sep;105:27-42. doi: 10.1016/j.semcdb.2020.05.019. Epub 2020 Jun 29.
5
Breaking symmetry - cell polarity signaling pathways in growth cone guidance and synapse formation.
Curr Opin Neurobiol. 2020 Aug;63:77-86. doi: 10.1016/j.conb.2020.03.010. Epub 2020 Apr 29.
7
Circuitry Underlying Experience-Dependent Plasticity in the Mouse Visual System.
Neuron. 2020 Apr 8;106(1):21-36. doi: 10.1016/j.neuron.2020.01.031.
9
Two Pathways for the Activity-Dependent Growth and Differentiation of Synaptic Boutons in .
eNeuro. 2019 Aug 22;6(4). doi: 10.1523/ENEURO.0060-19.2019. Print 2019 Jul/Aug.
10
Nuclear import of the DSCAM-cytoplasmic domain drives signaling capable of inhibiting synapse formation.
EMBO J. 2019 Mar 15;38(6). doi: 10.15252/embj.201899669. Epub 2019 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验