Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA.
Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA.
Nat Commun. 2022 Jun 2;13(1):3081. doi: 10.1038/s41467-022-30548-5.
Some misfolded protein conformations can bypass proteostasis machinery and remain soluble in vivo. This is an unexpected observation, as cellular quality control mechanisms should remove misfolded proteins. Three questions, then, are: how do long-lived, soluble, misfolded proteins bypass proteostasis? How widespread are such misfolded states? And how long do they persist? We address these questions using coarse-grain molecular dynamics simulations of the synthesis, termination, and post-translational dynamics of a representative set of cytosolic E. coli proteins. We predict that half of proteins exhibit misfolded subpopulations that bypass molecular chaperones, avoid aggregation, and will not be rapidly degraded, with some misfolded states persisting for months or longer. The surface properties of these misfolded states are native-like, suggesting they will remain soluble, while self-entanglements make them long-lived kinetic traps. In terms of function, we predict that one-third of proteins can misfold into soluble less-functional states. For the heavily entangled protein glycerol-3-phosphate dehydrogenase, limited-proteolysis mass spectrometry experiments interrogating misfolded conformations of the protein are consistent with the structural changes predicted by our simulations. These results therefore provide an explanation for how proteins can misfold into soluble conformations with reduced functionality that can bypass proteostasis, and indicate, unexpectedly, this may be a wide-spread phenomenon.
有些错误折叠的蛋白质构象可以绕过蛋白质稳态机制并在体内保持可溶性。这是一个出乎意料的观察结果,因为细胞质量控制机制应该去除错误折叠的蛋白质。那么,三个问题是:长寿命、可溶性、错误折叠的蛋白质如何绕过蛋白质稳态?这种错误折叠状态有多普遍?它们能持续多久?我们使用代表性的一组大肠杆菌细胞质蛋白的合成、终止和翻译后动力学的粗粒度分子动力学模拟来解决这些问题。我们预测,一半的蛋白质表现出错误折叠的亚群,这些亚群绕过分子伴侣,避免聚集,并且不会被迅速降解,一些错误折叠状态会持续数月或更长时间。这些错误折叠状态的表面特性类似于天然状态,表明它们将保持可溶性,而自缠结使它们成为长寿命的动力学陷阱。就功能而言,我们预测三分之一的蛋白质可以错误折叠成可溶性但功能较低的状态。对于高度纠缠的甘油磷酸脱氢酶蛋白,有限蛋白酶解质谱实验检测到的蛋白质错误折叠构象与我们模拟预测的结构变化一致。因此,这些结果为蛋白质如何错误折叠成具有降低功能的可溶性构象并绕过蛋白质稳态提供了一个解释,并出乎意料地表明,这可能是一种广泛存在的现象。