Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE 41296, Sweden.
Nat Commun. 2022 Jun 2;13(1):3069. doi: 10.1038/s41467-022-30684-y.
Mammalian cells adapt their functional state in response to external signals in form of ligands that bind receptors on the cell-surface. Mechanistically, this involves signal-processing through a complex network of molecular interactions that govern transcription factor activity patterns. Computer simulations of the information flow through this network could help predict cellular responses in health and disease. Here we develop a recurrent neural network framework constrained by prior knowledge of the signaling network with ligand-concentrations as input and transcription factor-activity as output. Applied to synthetic data, it predicts unseen test-data (Pearson correlation r = 0.98) and the effects of gene knockouts (r = 0.8). We stimulate macrophages with 59 different ligands, with and without the addition of lipopolysaccharide, and collect transcriptomics data. The framework predicts this data under cross-validation (r = 0.8) and knockout simulations suggest a role for RIPK1 in modulating the lipopolysaccharide response. This work demonstrates the feasibility of genome-scale simulations of intracellular signaling.
哺乳动物细胞通过表面受体结合配体的形式对外界信号做出功能状态的适应性改变。从机制上讲,这涉及通过分子相互作用的复杂网络进行信号处理,该网络控制转录因子活性模式。通过对该网络信息流进行计算机模拟,可以帮助预测健康和疾病状态下的细胞反应。在这里,我们开发了一种基于信号网络先验知识的递归神经网络框架,该框架以配体浓度作为输入,以转录因子活性作为输出。将其应用于合成数据,可预测未见的测试数据(Pearson 相关系数 r=0.98)和基因敲除的效果(r=0.8)。我们用 59 种不同的配体刺激巨噬细胞,有和没有脂多糖的添加,并收集转录组学数据。该框架在交叉验证(r=0.8)下预测了该数据,并且敲除模拟表明 RIPK1 在调节脂多糖反应中起作用。这项工作证明了进行细胞内信号转导的基因组规模模拟的可行性。