Suppr超能文献

网络分析揭示了在应对冲突性炎症信号时,巨噬细胞激活的一个独特轴。

Network Analysis Reveals a Distinct Axis of Macrophage Activation in Response to Conflicting Inflammatory Cues.

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908; and.

Department of Cellular and Integrative Physiology, University of Nebraska Medical Center and Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68198.

出版信息

J Immunol. 2021 Feb 15;206(4):883-891. doi: 10.4049/jimmunol.1901444. Epub 2021 Jan 6.

Abstract

Macrophages are subject to a wide range of cytokine and pathogen signals in vivo, which contribute to differential activation and modulation of inflammation. Understanding the response to multiple, often-conflicting cues that macrophages experience requires a network perspective. In this study, we integrate data from literature curation and mRNA expression profiles obtained from wild type C57/BL6J mice macrophages to develop a large-scale computational model of the macrophage signaling network. In response to stimulation across all pairs of nine cytokine inputs, the model predicted activation along the classic M1-M2 polarization axis but also a second axis of macrophage activation that distinguishes unstimulated macrophages from a mixed phenotype induced by conflicting cues. Along this second axis, combinations of conflicting stimuli, IL-4 with LPS, IFN-γ, IFN-β, or TNF-α, produced mutual inhibition of several signaling pathways, e.g., NF-κB and STAT6, but also mutual activation of the PI3K signaling module. In response to combined IFN-γ and IL-4, the model predicted genes whose expression was mutually inhibited, e.g., or and , or mutually enhanced, e.g., and , validated by independent experimental data. Knockdown simulations further predicted network mechanisms underlying functional cross-talk, such as mutual STAT3/STAT6-mediated enhancement of Il4rα expression. In summary, the computational model predicts that network cross-talk mediates a broadened spectrum of macrophage activation in response to mixed pro- and anti-inflammatory cytokine cues, making it useful for modeling in vivo scenarios.

摘要

巨噬细胞在体内受到广泛的细胞因子和病原体信号的影响,这些信号导致炎症的不同激活和调节。理解巨噬细胞所经历的多种、常常相互冲突的信号的反应需要网络视角。在这项研究中,我们整合了文献整理和从野生型 C57/BL6J 小鼠巨噬细胞获得的 mRNA 表达谱的数据,以开发一个大规模的巨噬细胞信号网络计算模型。在对所有九种细胞因子输入的两两刺激的反应中,该模型预测了沿着经典的 M1-M2 极化轴的激活,但也预测了第二个巨噬细胞激活轴,该轴将未受刺激的巨噬细胞与由相互冲突的信号诱导的混合表型区分开来。沿着这个第二个轴,冲突刺激的组合,如 IL-4 与 LPS、IFN-γ、IFN-β 或 TNF-α,对几个信号通路产生了相互抑制,如 NF-κB 和 STAT6,但也对 PI3K 信号模块产生了相互激活。对联合 IFN-γ 和 IL-4 的反应,模型预测了表达相互抑制的基因,如 或 和 ,或相互增强的基因,如 和 ,这被独立的实验数据所验证。敲低模拟进一步预测了网络交叉对话的机制,如相互的 STAT3/STAT6 介导的 Il4rα 表达增强。总之,该计算模型预测,网络交叉对话介导了巨噬细胞对混合促炎和抗炎细胞因子信号的更广泛的激活谱,使其在模拟体内情景方面非常有用。

相似文献

1
Network Analysis Reveals a Distinct Axis of Macrophage Activation in Response to Conflicting Inflammatory Cues.
J Immunol. 2021 Feb 15;206(4):883-891. doi: 10.4049/jimmunol.1901444. Epub 2021 Jan 6.
2
Control of the Inflammatory Macrophage Transcriptional Signature by miR-155.
PLoS One. 2016 Jul 22;11(7):e0159724. doi: 10.1371/journal.pone.0159724. eCollection 2016.
3
Luteolin Alters Macrophage Polarization to Inhibit Inflammation.
Inflammation. 2020 Feb;43(1):95-108. doi: 10.1007/s10753-019-01099-7.
5
NOTCH4 Exhibits Anti-Inflammatory Activity in Activated Macrophages by Interfering With Interferon-γ and TLR4 Signaling.
Front Immunol. 2021 Dec 1;12:734966. doi: 10.3389/fimmu.2021.734966. eCollection 2021.
6
Cardiotrophin-1 is an anti-inflammatory cytokine and promotes IL-4-induced M2 macrophage polarization.
FASEB J. 2019 Jun;33(6):7578-7587. doi: 10.1096/fj.201801563R. Epub 2019 Mar 20.
8
Absence of TNF Leads to Alternative Activation in Peritoneal Macrophages in Experimental Listeria Monocytogenes Infection.
Immunol Invest. 2022 May;51(4):1005-1022. doi: 10.1080/08820139.2021.1902346. Epub 2021 Apr 8.

引用本文的文献

1
Logic-based modeling of biological networks with Netflux.
PLoS Comput Biol. 2025 Apr 4;21(4):e1012864. doi: 10.1371/journal.pcbi.1012864. eCollection 2025 Apr.
2
Multi-Scale Multi-Cell Computational Model of Inflammation-Mediated Aortic Remodeling in Hypertension.
Ann Biomed Eng. 2025 Apr;53(4):1014-1023. doi: 10.1007/s10439-025-03685-3. Epub 2025 Feb 4.
3
Linking signal input, cell state, and spatial context to inflammatory responses.
Curr Opin Immunol. 2024 Dec;91:102462. doi: 10.1016/j.coi.2024.102462. Epub 2024 Sep 11.
4
Getting everyone to agree on gene signatures for murine macrophage polarization in vitro.
PLoS One. 2024 Feb 8;19(2):e0297872. doi: 10.1371/journal.pone.0297872. eCollection 2024.
5
Logic-based modeling of biological networks with Netflux.
bioRxiv. 2024 Nov 13:2024.01.11.575227. doi: 10.1101/2024.01.11.575227.
6
Fatty acid metabolism of immune cells: a new target of tumour immunotherapy.
Cell Death Discov. 2024 Jan 20;10(1):39. doi: 10.1038/s41420-024-01807-9.
7
Reframing macrophage diversity with network motifs.
Trends Immunol. 2023 Dec;44(12):965-970. doi: 10.1016/j.it.2023.10.009. Epub 2023 Nov 9.

本文引用的文献

2
Mapping macrophage polarization over the myocardial infarction time continuum.
Basic Res Cardiol. 2018 Jun 4;113(4):26. doi: 10.1007/s00395-018-0686-x.
3
Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction.
Transl Res. 2018 Jan;191:15-28. doi: 10.1016/j.trsl.2017.10.001. Epub 2017 Oct 13.
4
Macrophage overexpression of matrix metalloproteinase-9 in aged mice improves diastolic physiology and cardiac wound healing after myocardial infarction.
Am J Physiol Heart Circ Physiol. 2018 Feb 1;314(2):H224-H235. doi: 10.1152/ajpheart.00453.2017. Epub 2017 Oct 13.
7
Leukocyte Trafficking in Cardiovascular Disease: Insights from Experimental Models.
Mediators Inflamm. 2017;2017:9746169. doi: 10.1155/2017/9746169. Epub 2017 Mar 30.
8
IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation.
Basic Res Cardiol. 2017 May;112(3):33. doi: 10.1007/s00395-017-0622-5. Epub 2017 Apr 24.
9
Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk.
Nat Immunol. 2017 May;18(5):530-540. doi: 10.1038/ni.3710. Epub 2017 Mar 13.
10
Iterative Modeling Reveals Evidence of Sequential Transcriptional Control Mechanisms.
Cell Syst. 2017 Mar 22;4(3):330-343.e5. doi: 10.1016/j.cels.2017.01.012. Epub 2017 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验