Department of CSE, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India.
Department of CSE, R.V.R & J.C College of Engineering, Guntur, India.
J Healthc Eng. 2022 Apr 30;2022:2170839. doi: 10.1155/2022/2170839. eCollection 2022.
Several studies aimed at improving healthcare management have shown that the importance of healthcare has grown in recent years. In the healthcare industry, effective decision-making requires multicriteria group decision-making. Simultaneously, big data analytics could be used to help with disease detection and healthcare delivery. Only a few previous studies on large-scale group decision-making (LSDGM) in the big data-driven healthcare Industry 4.0 have focused on this topic. The goal of this work is to improve healthcare management decision-making by developing a new MapReduce-based LSDGM model (MR-LSDGM) for the healthcare Industry 4.0 context. Clustering decision-makers (DM), modelling DM preferences, and classification are the three stages of the MR-LSDGM technique. Furthermore, the DMs are subdivided using a novel biogeography-based optimization (BBO) technique combined with fuzzy C-means (FCM). The subgroup preferences are then modelled using the two-tuple fuzzy linguistic representation (2TFLR) technique. The final classification method also includes a feature extractor based on long short-term memory (LSTM) and a classifier based on an ideal extreme learning machine (ELM). MapReduce is a data management platform used to handle massive amounts of data. A thorough set of experimental analyses is carried out, and the results are analysed using a variety of metrics.
多项旨在改善医疗保健管理的研究表明,近年来医疗保健的重要性日益增加。在医疗保健行业,有效的决策需要多准则群体决策。同时,可以使用大数据分析来帮助发现疾病和提供医疗保健。之前只有少数关于大数据驱动的医疗保健 4.0 行业中的大规模群体决策 (LSDGM) 的研究关注这一主题。这项工作的目标是通过为医疗保健 4.0 环境开发一种新的基于 MapReduce 的 LSDGM 模型 (MR-LSDGM) 来改善医疗保健管理决策。MR-LSDGM 技术包括三个阶段:决策者 (DM) 聚类、DM 偏好建模和分类。此外,使用一种新颖的基于生物地理学的优化 (BBO) 技术与模糊 C 均值 (FCM) 相结合对 DMs 进行细分。然后使用双元模糊语言表示法 (2TFLR) 技术对分组偏好进行建模。最终的分类方法还包括基于长短期记忆 (LSTM) 的特征提取器和基于理想极限学习机 (ELM) 的分类器。MapReduce 是一个用于处理大量数据的数据管理平台。进行了一系列全面的实验分析,并使用各种指标对结果进行分析。