Suppr超能文献

基于生物地理学优化(BBO)模型的 LSGDM 在医疗保健应用中的应用。

LSGDM with Biogeography-Based Optimization (BBO) Model for Healthcare Applications.

机构信息

Department of CSE, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India.

Department of CSE, R.V.R & J.C College of Engineering, Guntur, India.

出版信息

J Healthc Eng. 2022 Apr 30;2022:2170839. doi: 10.1155/2022/2170839. eCollection 2022.

Abstract

Several studies aimed at improving healthcare management have shown that the importance of healthcare has grown in recent years. In the healthcare industry, effective decision-making requires multicriteria group decision-making. Simultaneously, big data analytics could be used to help with disease detection and healthcare delivery. Only a few previous studies on large-scale group decision-making (LSDGM) in the big data-driven healthcare Industry 4.0 have focused on this topic. The goal of this work is to improve healthcare management decision-making by developing a new MapReduce-based LSDGM model (MR-LSDGM) for the healthcare Industry 4.0 context. Clustering decision-makers (DM), modelling DM preferences, and classification are the three stages of the MR-LSDGM technique. Furthermore, the DMs are subdivided using a novel biogeography-based optimization (BBO) technique combined with fuzzy C-means (FCM). The subgroup preferences are then modelled using the two-tuple fuzzy linguistic representation (2TFLR) technique. The final classification method also includes a feature extractor based on long short-term memory (LSTM) and a classifier based on an ideal extreme learning machine (ELM). MapReduce is a data management platform used to handle massive amounts of data. A thorough set of experimental analyses is carried out, and the results are analysed using a variety of metrics.

摘要

多项旨在改善医疗保健管理的研究表明,近年来医疗保健的重要性日益增加。在医疗保健行业,有效的决策需要多准则群体决策。同时,可以使用大数据分析来帮助发现疾病和提供医疗保健。之前只有少数关于大数据驱动的医疗保健 4.0 行业中的大规模群体决策 (LSDGM) 的研究关注这一主题。这项工作的目标是通过为医疗保健 4.0 环境开发一种新的基于 MapReduce 的 LSDGM 模型 (MR-LSDGM) 来改善医疗保健管理决策。MR-LSDGM 技术包括三个阶段:决策者 (DM) 聚类、DM 偏好建模和分类。此外,使用一种新颖的基于生物地理学的优化 (BBO) 技术与模糊 C 均值 (FCM) 相结合对 DMs 进行细分。然后使用双元模糊语言表示法 (2TFLR) 技术对分组偏好进行建模。最终的分类方法还包括基于长短期记忆 (LSTM) 的特征提取器和基于理想极限学习机 (ELM) 的分类器。MapReduce 是一个用于处理大量数据的数据管理平台。进行了一系列全面的实验分析,并使用各种指标对结果进行分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34a5/9153947/ee6b2cf8e240/JHE2022-2170839.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验