Suppr超能文献

基于深度学习的高速视频内窥镜声带疾病检测与分类最优模型。

Optimal Deep Learning-Based Vocal Fold Disorder Detection and Classification Model on High-Speed Video Endoscopy.

机构信息

Department of Computer Science and Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai, India.

Department of Electronics and Communication Engineering, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India.

出版信息

J Healthc Eng. 2022 Oct 17;2022:4248938. doi: 10.1155/2022/4248938. eCollection 2022.

Abstract

The use of high-speed video-endoscopy (HSV) in the study of phonatory processes linked to speech needs the precise identification of vocal fold boundaries at the time of vibration. The HSV is a unique laryngeal imaging technology that captures intracycle vocal fold vibrations at a higher frame rate without the need for auditory inputs. The HSV is also effective in identifying the vibrational characteristics of the vocal folds with an increased temporal resolution during retained phonation and flowing speech. Clinically significant vocal fold vibratory characteristics in running speech can be retrieved by creating automated algorithms for extracting HSV-based vocal fold vibration data. The best deep learning-based diagnosis and categorization of vocal fold abnormalities is due to the usage of HSV (ODL-VFDDC). The suggested ODL-VFDDC technique starts with temporal segmentation and motion correction to identify vocalized regions from the HSV recording and gathers the position of movable vocal folds across frames. The attributes gathered are fed into the deep belief network (DBN) model. Furthermore, the agricultural fertility algorithm (AFA) is used to optimize the hyperparameter tuning of the DBN model, which improves classification results. In terms of vocal fold disorder classification, the testing results demonstrated that the ODL-VFDDC technique beats the other existing methodologies. The farmland fertility algorithm (FFA) is then used to accurately determine the glottal limits of vibrating vocal folds. The suggested method has successfully tracked the speech fold boundaries across frames with minimum processing cost and high resilience to picture noise. This method gives a way to look at how the vocal folds move during a connected speech that is completely done by itself.

摘要

高速视频内镜(HSV)在与语音相关的发声过程研究中的应用需要在振动时准确识别声带边界。HSV 是一种独特的喉部成像技术,可在无需听觉输入的情况下以更高的帧率捕获声带内周期的振动。HSV 还可以在保留发音和流畅语音期间以增加的时间分辨率有效识别声带的振动特征。通过创建用于提取基于 HSV 的声带振动数据的自动算法,可以检索到运行语音中的临床意义重大的声带振动特征。基于 HSV 的最佳深度学习诊断和声带异常分类是由于使用了 HSV(ODL-VFDDC)。建议的 ODL-VFDDC 技术首先进行时间分割和运动校正,以从 HSV 记录中识别发声区域,并在各帧之间收集可动声带的位置。收集到的属性被输入到深度置信网络(DBN)模型中。此外,农业肥力算法(AFA)用于优化 DBN 模型的超参数调整,从而提高分类结果。在声带障碍分类方面,测试结果表明,ODL-VFDDC 技术优于其他现有方法。然后使用农田肥力算法(FFA)准确确定振动声带的声门极限。所建议的方法已成功地在各帧之间跟踪语音褶皱边界,其处理成本最低,对图像噪声的抵抗力最高。该方法为观察声带在连续语音中的运动方式提供了一种方法,而这完全是自主完成的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d5a/9640237/98dc4d0cf3ec/JHE2022-4248938.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验