Suppr超能文献

基于混合深度学习的新型特征选择在电子医疗环境中的心脏病检测与分类。

A Novel Feature Selection with Hybrid Deep Learning Based Heart Disease Detection and Classification in the e-Healthcare Environment.

机构信息

Department of Information Technology, SRM Institute of Science and Technology, Ramapuram, Chennai, India.

Department of Artificial Intelligence, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai, India.

出版信息

Comput Intell Neurosci. 2022 Sep 28;2022:1167494. doi: 10.1155/2022/1167494. eCollection 2022.

Abstract

With the advancements in data mining, wearables, and cloud computing, online disease diagnosis services have been widely employed in the e-healthcare environment and improved the quality of the services. The e-healthcare services help to reduce the death rate by the earlier identification of the diseases. Simultaneously, heart disease (HD) is a deadly disorder, and patient survival depends on early diagnosis of HD. Early HD diagnosis and categorization play a key role in the analysis of clinical data. In the context of e-healthcare, we provide a novel feature selection with hybrid deep learning-based heart disease detection and classification (FSHDL-HDDC) model. The two primary preprocessing processes of the FSHDL-HDDC approach are data normalisation and the replacement of missing values. The FSHDL-HDDC method also necessitates the development of a feature selection method based on the elite opposition-based squirrel searchalgorithm (EO-SSA) in order to determine the optimal subset of features. Moreover, an attention-based convolutional neural network (ACNN) with long short-term memory (LSTM), called (ACNN-LSTM) model, is utilized for the detection of HD by using medical data. An extensive experimental study is performed to ensure the improved classification performance of the FSHDL-HDDC technique. A detailed comparison study reported the betterment of the FSHDL-HDDC method on existing techniques interms of different performance measures. The suggested system, the FSHDL-HDDC, has reached its maximum level of accuracy, which is 0.9772.

摘要

随着数据挖掘、可穿戴设备和云计算的进步,在线疾病诊断服务在电子医疗环境中得到了广泛应用,提高了服务质量。电子医疗服务有助于通过早期识别疾病来降低死亡率。同时,心脏病 (HD) 是一种致命的疾病,患者的生存取决于 HD 的早期诊断。早期 HD 诊断和分类在临床数据分析中起着关键作用。在电子医疗环境中,我们提供了一种新颖的基于混合深度学习的心脏病检测和分类 (FSHDL-HDDC) 模型的特征选择方法。FSHDL-HDDC 方法的两个主要预处理过程是数据归一化和缺失值替换。FSHDL-HDDC 方法还需要开发一种基于精英反对的松鼠搜索算法 (EO-SSA) 的特征选择方法,以确定最优的特征子集。此外,还利用基于注意力的卷积神经网络 (ACNN) 与长短时记忆 (LSTM),即 (ACNN-LSTM) 模型,使用医疗数据来检测 HD。进行了广泛的实验研究,以确保 FSHDL-HDDC 技术的分类性能得到提高。详细的对比研究报告表明,在不同的性能指标下,FSHDL-HDDC 方法优于现有技术。所提出的系统 FSHDL-HDDC 达到了其最高精度,即 0.9772。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be29/9534609/4de706d293b8/CIN2022-1167494.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验