Suppr超能文献

几何结构对受生物启发的[FeFe]-氢化酶配合物非仿生异裂H的影响:基于受阻路易斯酸碱对反应性的罕见例子

Geometrical influence on the non-biomimetic heterolytic splitting of H by bio-inspired [FeFe]-hydrogenase complexes: a rare example of frustrated Lewis pair based reactivity.

作者信息

Chatelain Lucile, Breton Jean-Baptiste, Arrigoni Federica, Schollhammer Philippe, Zampella Giuseppe

机构信息

UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 Brest-Cedex 3 29238 France

Department of Biotechnology and Bioscience, University of Milano-Bicocca Piazza della Scienza 2 20126 Milan Italy

出版信息

Chem Sci. 2022 Mar 22;13(17):4863-4873. doi: 10.1039/d1sc06975f. eCollection 2022 May 4.

Abstract

Despite the high levels of interest in the synthesis of bio-inspired [FeFe]-hydrogenase complexes, H oxidation, which is one specific aspect of hydrogenase enzymatic activity, is not observed for most reported complexes. To attempt H-H bond cleavage, two disubstituted diiron dithiolate complexes in the form of [Fe(μ-pdt)L(CO)] (L: PMe, dmpe) have been used to play the non-biomimetic role of a Lewis base, with frustrated Lewis pairs (FLPs) formed in the presence of B(CF) Lewis acid. These unprecedented FLPs, based on the bimetallic Lewis base partner, allow the heterolytic splitting of the H molecule, forming a protonated diiron cation and hydrido-borate anion. The substitution, symmetrical or asymmetrical, of two phosphine ligands at the diiron dithiolate core induces a strong difference in the H bond cleavage abilities, with the FLP based on the first complex being more efficient than the second. DFT investigations examined the different mechanistic pathways involving each accessible isomer and rationalized the experimental findings. One of the main DFT results highlights that the iron site acting as a Lewis base for the asymmetrical complex is the {Fe(CO)} subunit, which is less electron-rich than the {FeL(CO)} site of the symmetrical complex, diminishing the reactivity towards H. Calculations relating to the different mechanistic pathways revealed the presence of a terminal hydride intermediate at the apical site of a rotated {Fe(CO)} site, which is experimentally observed, and a semi-bridging hydride intermediate from H activation at the Fe-Fe site; these are responsible for a favourable back-reaction, reducing the conversion yield observed in the case of the asymmetrical complex. The use of two equivalents of Lewis acid allows for more complete and faster H bond cleavage due to the encapsulation of the hydrido-borate species by a second borane, favouring the reactivity of each FLP, in agreement with DFT calculations.

摘要

尽管人们对生物启发的[FeFe]-氢化酶配合物的合成兴趣浓厚,但对于大多数已报道的配合物而言,氢化酶酶活性的一个特定方面——H氧化并未被观察到。为了尝试H-H键的断裂,已使用两种[Fe(μ-pdt)L(CO)]形式的二取代二铁二硫醇盐配合物(L:PMe,dmpe)来充当路易斯碱的非仿生角色,在B(CF)路易斯酸存在下形成受阻路易斯对(FLP)。这些基于双金属路易斯碱配体的前所未有的FLP能够使H分子发生异裂,形成质子化的二铁阳离子和氢硼化物阴离子。二铁二硫醇盐核心上两个膦配体的对称或不对称取代会导致H键断裂能力存在显著差异,基于第一种配合物的FLP比第二种更有效。密度泛函理论(DFT)研究考察了涉及每种可及异构体的不同反应机理途径,并对实验结果进行了合理化解释。DFT的主要结果之一突出表明,对于不对称配合物而言,充当路易斯碱的铁位点是{Fe(CO)}亚基,其电子丰富程度低于对称配合物的{FeL(CO)}位点,从而降低了对H的反应活性。与不同反应机理途径相关的计算揭示,在旋转的{Fe(CO)}位点的顶端存在一个末端氢化物中间体,这在实验中已被观察到,并且在Fe-Fe位点处通过H活化形成了一个半桥连氢化物中间体;这些导致了一个有利的逆反应,降低了不对称配合物情况下观察到的转化产率。使用两当量的路易斯酸可实现更完全、更快的H键断裂,这是由于第二个硼烷对氢硼化物物种的包封,有利于每个FLP的反应活性,这与DFT计算结果一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验