Photobiotechnology, Department of Plant Biochemistry, Ruhr-Universität Bochum, 44801, Bochum, Germany.
CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Marseille, France.
Nat Commun. 2021 Feb 2;12(1):756. doi: 10.1038/s41467-020-20861-2.
[FeFe]-hydrogenases are efficient H-catalysts, yet upon contact with dioxygen their catalytic cofactor (H-cluster) is irreversibly inactivated. Here, we combine X-ray crystallography, rational protein design, direct electrochemistry, and Fourier-transform infrared spectroscopy to describe a protein morphing mechanism that controls the reversible transition between the catalytic H-state and the inactive but oxygen-resistant H-state in [FeFe]-hydrogenase CbA5H of Clostridium beijerinckii. The X-ray structure of air-exposed CbA5H reveals that a conserved cysteine residue in the local environment of the active site (H-cluster) directly coordinates the substrate-binding site, providing a safety cap that prevents O-binding and consequently, cofactor degradation. This protection mechanism depends on three non-conserved amino acids situated approximately 13 Å away from the H-cluster, demonstrating that the 1st coordination sphere chemistry of the H-cluster can be remote-controlled by distant residues.
[FeFe]-氢化酶是高效的 H 催化剂,但与氧气接触后,其催化辅因子(H 簇)会不可逆失活。在这里,我们结合 X 射线晶体学、合理的蛋白质设计、直接电化学和傅里叶变换红外光谱来描述一种蛋白质形态转变机制,该机制控制[FeFe]-氢化酶 CbA5H 中催化 H 态和非活性但耐氧 H 态之间的可逆转变。CbA5H 的空气暴露 X 射线结构表明,活性位点(H 簇)局部环境中的保守半胱氨酸残基直接配位底物结合位点,提供安全盖,防止 O 结合,从而防止辅因子降解。这种保护机制取决于三个非保守的氨基酸,它们距离 H 簇约 13 Å,这表明 H 簇的第一配位球化学可以通过远程残基进行远程控制。