Suppr超能文献

BBPpredict:一种用于识别血脑屏障穿透肽的网络服务。

BBPpredict: A Web Service for Identifying Blood-Brain Barrier Penetrating Peptides.

作者信息

Chen Xue, Zhang Qianyue, Li Bowen, Lu Chunying, Yang Shanshan, Long Jinjin, He Bifang, Chen Heng, Huang Jian

机构信息

Medical College, Guizhou University, Guiyang, China.

School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Front Genet. 2022 May 17;13:845747. doi: 10.3389/fgene.2022.845747. eCollection 2022.

Abstract

Blood-brain barrier (BBB) is a major barrier to drug delivery into the brain in the treatment of central nervous system (CNS) diseases. Blood-brain barrier penetrating peptides (BBPs), a class of peptides that can cross BBB through various mechanisms without damaging BBB, are effective drug candidates for CNS diseases. However, identification of BBPs by experimental methods is time-consuming and laborious. To discover more BBPs as drugs for CNS disease, it is urgent to develop computational methods that can quickly and accurately identify BBPs and non-BBPs. In the present study, we created a training dataset that consists of 326 BBPs derived from previous databases and published manuscripts and 326 non-BBPs collected from UniProt, to construct a BBP predictor based on sequence information. We also constructed an independent testing dataset with 99 BBPs and 99 non-BBPs. Multiple machine learning methods were compared based on the training dataset via a nested cross-validation. The final BBP predictor was constructed based on the training dataset and the results showed that random forest (RF) method outperformed other classification algorithms on the training and independent testing dataset. Compared with previous BBP prediction tools, the RF-based predictor, named BBPpredict, performs considerably better than state-of-the-art BBP predictors. BBPpredict is expected to contribute to the discovery of novel BBPs, or at least can be a useful complement to the existing methods in this area. BBPpredict is freely available at http://i.uestc.edu.cn/BBPpredict/cgi-bin/BBPpredict.pl.

摘要

血脑屏障(BBB)是治疗中枢神经系统(CNS)疾病时药物进入大脑的主要障碍。血脑屏障穿透肽(BBP)是一类能够通过多种机制穿过血脑屏障而不损害血脑屏障的肽,是治疗中枢神经系统疾病的有效候选药物。然而,通过实验方法鉴定血脑屏障穿透肽既耗时又费力。为了发现更多可用于中枢神经系统疾病治疗的血脑屏障穿透肽,迫切需要开发能够快速、准确地识别血脑屏障穿透肽和非血脑屏障穿透肽的计算方法。在本研究中,我们创建了一个训练数据集,该数据集由来自先前数据库和已发表手稿的326个血脑屏障穿透肽以及从UniProt收集的326个非血脑屏障穿透肽组成,以便基于序列信息构建一个血脑屏障穿透肽预测器。我们还构建了一个包含99个血脑屏障穿透肽和99个非血脑屏障穿透肽的独立测试数据集。通过嵌套交叉验证,在训练数据集的基础上比较了多种机器学习方法。基于训练数据集构建了最终的血脑屏障穿透肽预测器,结果表明随机森林(RF)方法在训练数据集和独立测试数据集上的表现优于其他分类算法。与先前的血脑屏障穿透肽预测工具相比,基于随机森林的预测器BBPpredict的性能明显优于当前最先进的血脑屏障穿透肽预测器。BBPpredict有望有助于发现新型血脑屏障穿透肽,或者至少可以作为该领域现有方法的有益补充。可通过http://i.uestc.edu.cn/BBPpredict/cgi-bin/BBPpredict.pl免费获取BBPpredict。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b57f/9152268/29d067c6af2d/fgene-13-845747-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验