Suppr超能文献

通过提取的笔记中的心理社会因素预测未来的医疗保健利用。

Prediction of Future Health Care Utilization Through Note-extracted Psychosocial Factors.

机构信息

Departments of Medical Informatics & Clinical Epidemiology.

Family Medicine, Oregon Health & Science University, Portland, OR.

出版信息

Med Care. 2022 Aug 1;60(8):570-578. doi: 10.1097/MLR.0000000000001742. Epub 2022 Jun 4.

Abstract

BACKGROUND

Persons with multimorbidity (≥2 chronic conditions) face an increased risk of poor health outcomes, especially as they age. Psychosocial factors such as social isolation, chronic stress, housing insecurity, and financial insecurity have been shown to exacerbate these outcomes, but are not routinely assessed during the clinical encounter. Our objective was to extract these concepts from chart notes using natural language processing and predict their impact on health care utilization for patients with multimorbidity.

METHODS

A cohort study to predict the 1-year likelihood of hospitalizations and emergency department visits for patients 65+ with multimorbidity with and without psychosocial factors. Psychosocial factors were extracted from narrative notes; all other covariates were extracted from electronic health record data from a large academic medical center using validated algorithms and concept sets. Logistic regression was performed to predict the likelihood of hospitalization and emergency department visit in the next year.

RESULTS

In all, 76,479 patients were eligible; the majority were White (89%), 54% were female, with mean age 73. Those with psychosocial factors were older, had higher baseline utilization, and more chronic illnesses. The 4 psychosocial factors all independently predicted future utilization (odds ratio=1.27-2.77, C -statistic=0.63). Accounting for demographics, specific conditions, and previous utilization, 3 of 4 of the extracted factors remained predictive (odds ratio=1.13-1.86) for future utilization. Compared with models with no psychosocial factors, they had improved discrimination. Individual predictions were mixed, with social isolation predicting depression and morbidity; stress predicting atherosclerotic cardiovascular disease onset; and housing insecurity predicting substance use disorder morbidity.

DISCUSSION

Psychosocial factors are known to have adverse health impacts, but are rarely measured; using natural language processing, we extracted factors that identified a higher risk segment of older adults with multimorbidity. Combining these extraction techniques with other measures of social determinants may help catalyze population health efforts to address psychosocial factors to mitigate their health impacts.

摘要

背景

患有多种疾病(≥2 种慢性疾病)的人健康状况较差的风险增加,尤其是随着年龄的增长。社会隔离、慢性压力、住房不安全和经济不安全等心理社会因素已被证明会加剧这些后果,但在临床就诊中通常不会进行评估。我们的目标是使用自然语言处理从图表记录中提取这些概念,并预测它们对患有多种疾病的患者的医疗保健利用的影响。

方法

这是一项队列研究,旨在预测患有多种疾病且伴有或不伴有心理社会因素的 65 岁及以上患者在未来 1 年内住院和急诊就诊的可能性。心理社会因素从叙述性记录中提取;所有其他协变量均使用来自大型学术医疗中心的电子健康记录数据,使用经过验证的算法和概念集提取。使用逻辑回归预测下一年住院和急诊就诊的可能性。

结果

共有 76479 名患者符合条件;大多数是白人(89%),54%是女性,平均年龄为 73 岁。有心理社会因素的患者年龄较大,基线利用率较高,且患有更多的慢性疾病。这 4 种心理社会因素均独立预测未来的利用率(优势比=1.27-2.77,C 统计量=0.63)。在考虑人口统计学因素、具体疾病和以往利用率的情况下,提取的 4 个因素中的 3 个(优势比=1.13-1.86)仍然可以预测未来的利用率。与没有心理社会因素的模型相比,它们的区分能力有所提高。个别预测结果参差不齐,社会隔离预测抑郁和发病;压力预测动脉粥样硬化性心血管疾病的发生;住房不安全预测物质使用障碍的发病。

讨论

心理社会因素已知对健康有不利影响,但很少进行测量;通过自然语言处理,我们提取了可以识别患有多种疾病的老年患者中风险较高的人群的因素。将这些提取技术与其他社会决定因素指标相结合,可能有助于推动人群健康工作,以解决心理社会因素,减轻其对健康的影响。

相似文献

2
Prediction of Future Health Care Utilization.预测未来医疗保健利用情况。
Stud Health Technol Inform. 2022 Jun 6;290:1090-1091. doi: 10.3233/SHTI220282.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验