Suppr超能文献

住院电子病历中抑郁症的病例识别:范围综述。

Case Identification of Depression in Inpatient Electronic Medical Records: Scoping Review.

机构信息

Centre for Health Informatics, Cumming School of Medicine, University of Calgary, CWPH Building, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada, 1 4032202779, 1 4032109744.

Health Research Methods and Analytics, Alberta Health Services, Calgary, AB, Canada.

出版信息

JMIR Med Inform. 2024 Oct 14;12:e49781. doi: 10.2196/49781.

Abstract

BACKGROUND

Electronic medical records (EMRs) contain large amounts of detailed clinical information. Using medical record review to identify conditions within large quantities of EMRs can be time-consuming and inefficient. EMR-based phenotyping using machine learning and natural language processing algorithms is a continually developing area of study that holds potential for numerous mental health disorders.

OBJECTIVE

This review evaluates the current state of EMR-based case identification for depression and provides guidance on using current algorithms and constructing new ones.

METHODS

A scoping review of EMR-based algorithms for phenotyping depression was completed. This research encompassed studies published from January 2000 to May 2023. The search involved 3 databases: Embase, MEDLINE, and APA PsycInfo. This was carried out using selected keywords that fell into 3 categories: terms connected with EMRs, terms connected to case identification, and terms pertaining to depression. This study adhered to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines.

RESULTS

A total of 20 papers were assessed and summarized in the review. Most of these studies were undertaken in the United States, accounting for 75% (15/20). The United Kingdom and Spain followed this, accounting for 15% (3/20) and 10% (2/20) of the studies, respectively. Both data-driven and clinical rule-based methodologies were identified. The development of EMR-based phenotypes and algorithms indicates the data accessibility permitted by each health system, which led to varying performance levels among different algorithms.

CONCLUSIONS

Better use of structured and unstructured EMR components through techniques such as machine learning and natural language processing has the potential to improve depression phenotyping. However, more validation must be carried out to have confidence in depression case identification algorithms in general.

摘要

背景

电子病历(EMR)包含大量详细的临床信息。使用病历回顾来识别大量 EMR 中的病症可能既耗时又低效。基于 EMR 的机器学习和自然语言处理算法的表型分析是一个不断发展的研究领域,对于许多精神健康障碍具有潜在应用价值。

目的

本综述评估了基于 EMR 的抑郁症病例识别的现状,并提供了使用当前算法和构建新算法的指导。

方法

对基于 EMR 的抑郁症表型分析算法进行了范围综述。本研究涵盖了 2000 年 1 月至 2023 年 5 月期间发表的研究。检索涉及 3 个数据库:Embase、MEDLINE 和 APA PsycInfo。使用 3 个类别中的选定关键字进行搜索:与 EMR 相关的术语、与病例识别相关的术语以及与抑郁症相关的术语。本研究遵循 PRISMA-ScR(系统评价和荟萃分析扩展的首选报告项目,用于范围综述)指南。

结果

共有 20 篇论文进行了评估并在综述中进行了总结。这些研究大多在美国进行,占 75%(15/20)。英国和西班牙紧随其后,分别占 15%(3/20)和 10%(2/20)。确定了数据驱动和基于临床规则的方法。基于 EMR 的表型和算法的发展表明了每个卫生系统的数据可访问性,这导致了不同算法之间的性能水平存在差异。

结论

通过机器学习和自然语言处理等技术更好地利用结构化和非结构化 EMR 组件,有可能改善抑郁症的表型分析。然而,为了对抑郁症病例识别算法有信心,还需要进行更多的验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f61/11493107/5bbf7afcfdb8/medinform-v12-e49781-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验