Instituto Cajal, IC-CSIC, Avda. Doctor Arce 37, 28002, Madrid, Spain.
Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, 28006, Madrid, Spain.
BMC Biol. 2022 Jun 3;20(1):129. doi: 10.1186/s12915-022-01310-6.
Current understanding of the molecular basis of memory consolidation points to an important function of amyloid formation by neuronal-specific isoforms of the cytoplasmic polyadenylation element binding (CPEB) protein family. In particular, CPEB is thought to promote memory persistence through formation of self-sustaining prion-like amyloid assemblies at synapses, mediated by its intrinsically disordered region (IDR) and leading to permanent physical alterations at the basis of memory persistence. Although the molecular mechanisms by which amyloid formation takes place in CPEB have been described in invertebrates, the way amyloid formation occurs in the human homolog CPEB3 (hCPEB3) remains unclear. Here, we characterize by NMR spectroscopy the atomic level conformation and ps-ms dynamics of the 426-residue IDR of hCPEB3, which has been associated with episodic memory in humans.
We show that the 426-residue N-terminal region of hCPEB3 is a dynamic, intrinsically disordered region (IDR) which lacks stable folded structures. The first 29 residues, MQDDLLMDKSKTQPQPQQQQRQQQQPQP, adopt a helical + disordered motif, and residues 86-93: PQQPPPP, and 166-175: PPPPAPAPQP form polyproline II (PPII) helices. The (VG) repeat motif is completely disordered, and residues 200-250 adopt three partially populated α-helices. Residues 345-355, which comprise the nuclear localization signal (NLS), form a modestly populated α-helix which may mediate STAT5B binding. These findings allow us to suggest a model for nascent hCPEB3 structural transitions at single residue resolution, advancing that amyloid breaker residues, like proline, are a key difference between functional versus pathological amyloids.
Our NMR spectroscopic analysis of hCPEB3 provides insights into the first structural transitions involved in protein-protein and protein-mRNA interactions. The atomic level understanding of these structural transitions involved in hCPEB3 aggregation is a key first step toward understanding memory persistence in humans, as well as sequence features that differentiate beneficial amyloids from pathological ones.
Biophysics, Structural Biology, Biochemistry & Neurosciences.
当前对记忆巩固分子基础的理解表明,神经元特异性细胞质多聚腺苷酸化元件结合蛋白(CPEB)家族的蛋白异构体的淀粉样形成具有重要功能。特别是,CPEB 被认为通过其无规卷曲区域(IDR)介导的突触自维持朊样淀粉样组装来促进记忆持久,从而导致记忆持久的基础上发生永久性的物理改变。尽管已经在无脊椎动物中描述了 CPEB 中淀粉样形成的分子机制,但人类同源物 CPEB3(hCPEB3)中淀粉样形成的方式仍不清楚。在这里,我们通过 NMR 光谱法对与人类情景记忆相关的 426 个残基 IDR 的原子水平构象和 ps-ms 动力学进行了表征。
我们表明,hCPEB3 的 426 个残基 N 端区域是一个动态的、无规卷曲的区域(IDR),缺乏稳定的折叠结构。前 29 个残基 MQDDLLMDKSKTQPQPQQQQRQQQQPQP 采用螺旋+无规卷曲基序,残基 86-93:PQQPPPP 和 166-175:PPPPAPAPQP 形成聚脯氨酸 II(PPII)螺旋。(VG)重复基序完全无序,残基 200-250 采用三个部分填充的α-螺旋。包含核定位信号(NLS)的残基 345-355 形成一个适度填充的α-螺旋,可能介导 STAT5B 结合。这些发现使我们能够在单个残基分辨率下提出 hCPEB3 新生结构转变的模型,表明淀粉样肽断裂残基,如脯氨酸,是功能性与病理性淀粉样之间的关键区别。
我们对 hCPEB3 的 NMR 光谱分析提供了对涉及蛋白质-蛋白质和蛋白质-mRNA 相互作用的第一个结构转变的深入了解。对 hCPEB3 聚集涉及的这些结构转变的原子水平理解是理解人类记忆持久的关键的第一步,以及区分有益淀粉样和病理性淀粉样的序列特征。
生物物理学、结构生物学、生物化学和神经科学。