Suppr超能文献

使用多变量模型和心肌灌注成像预测多支冠状动脉疾病和仅应激成像的候选者。

Prediction of multivessel coronary artery disease and candidates for stress-only imaging using multivariable models with myocardial perfusion imaging.

机构信息

Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan.

Department of Functional Imaging and Artificial Intelligence, Kanazawa University, Kanazawa, Japan.

出版信息

Ann Nucl Med. 2022 Jul;36(7):674-683. doi: 10.1007/s12149-022-01751-7. Epub 2022 Jun 5.

Abstract

PURPOSE

Selecting patients with coronary multivessel disease (MVD) or no stenosis using myocardial perfusion imaging (MPI) is challenging. We aimed to create a model to predict MVD using a combination of quantitative MPI values and background factors of patients. We also assessed whether patients in the same database could be selected who do not require rest studies (stress-only imaging).

METHODS

We analyzed data from 1001 patients who had been assessed by stress MPI at 12 centers and 463 patients who had not undergone revascularization in Japan. Quantitative values based on MPI were obtained using cardioREPO software, which included myocardial perfusion defect scores, left ventricular ejection fractions and volumes. Factors in MPI and clinical backgrounds that could predict MVD were investigated using univariate and multivariate analyses. We also investigated whether stress data alone could predict patients without coronary stenosis to identify candidates for stress-only imaging.

RESULTS

We selected summed stress score (SSS), rest end-diastolic volume, and hypertension to create a predictive model for MVD. A logistic regression model was created with an area under the receiver operating characteristics curve (AUC) of 0.825. To more specifically predict coronary three-vessel disease, the AUC was 0.847 when SSS, diabetes, and hypertension were selected. The mean probabilities of abnormality based on the MVD prediction model were 12%, 24%, 40%, and 51% for no-, one-, two-, and three-vessel disease, respectively (p < 0.0001). For the model to select patients with stress-only imaging, the AUC was 0.78 when the model was created using SSS, stress end-systolic volume and the number of risk factors (diabetes, hypertension, chronic kidney disease, and a history of smoking).

CONCLUSION

A model analysis combining myocardial SPECT and clinical data can predict MVD, and can select patients for stress-only tests. Our models should prove useful for clinical applications.

摘要

目的

使用心肌灌注成像(MPI)选择患有冠状动脉多血管疾病(MVD)或无狭窄的患者具有挑战性。我们旨在创建一种使用定量 MPI 值和患者背景因素相结合来预测 MVD 的模型。我们还评估了是否可以选择同一数据库中无需进行静息研究(仅应激成像)的患者。

方法

我们分析了在日本的 12 个中心接受应激 MPI 评估的 1001 例患者和未接受血运重建的 463 例患者的数据。使用 cardioREPO 软件获得基于 MPI 的定量值,包括心肌灌注缺损评分、左心室射血分数和容积。使用单变量和多变量分析研究了 MPI 和临床背景中的可预测 MVD 的因素。我们还研究了仅应激数据是否可以单独预测无冠状动脉狭窄的患者,以确定仅应激成像的候选患者。

结果

我们选择总和应激评分(SSS)、静息末期容积和高血压来创建用于预测 MVD 的模型。创建了一个具有 0.825 的接收器操作特征曲线(AUC)的逻辑回归模型。为了更具体地预测冠状动脉三支血管疾病,当选择 SSS、糖尿病和高血压时,AUC 为 0.847。基于 MVD 预测模型的平均异常概率分别为无血管疾病、单支血管疾病、双支血管疾病和三支血管疾病的 12%、24%、40%和 51%(p<0.0001)。对于仅选择应激的患者的模型,当使用 SSS、应激收缩末期容积和危险因素(糖尿病、高血压、慢性肾脏病和吸烟史)创建模型时,AUC 为 0.78。

结论

结合心肌 SPECT 和临床数据的模型分析可以预测 MVD,并可以选择仅进行应激测试的患者。我们的模型应该对临床应用有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验