Suppr超能文献

基于单光子发射计算机断层扫描心肌灌注显像(SPECT MPI)极坐标图图像和深度学习的冠状动脉疾病严重程度分类:多支血管疾病预测研究

Classification of coronary artery disease severity based on SPECT MPI polarmap images and deep learning: A study on multi-vessel disease prediction.

作者信息

Chen Jui-Jen, Su Ting-Yi, Huang Chien-Che, Yang Ta-Hsin, Chang Yen-Hsiang, Lu Henry Horng-Shing

机构信息

Department of Nuclear Medicine, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung.

Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu.

出版信息

Digit Health. 2024 Oct 7;10:20552076241288430. doi: 10.1177/20552076241288430. eCollection 2024 Jan-Dec.

Abstract

BACKGROUND

Coronary artery disease (CAD) is a global health concern. Conventional single photon emission computed tomography myocardial perfusion imaging (SPECT MPI) is a noninvasive method for assessing the severity of CAD. However, it relies on manual classification by clinicians, which can lead to visual fatigue and potential errors. Deep learning techniques have displayed promising results in CAD diagnosis and prediction, providing efficient and accurate analysis of medical images.

METHODS

In this study, we explore the application of deep learning methods for assessing the severity of CAD and identifying cases of multivessel disease (MVD). We utilized the EfficientNet-V2 model in combination with DeepSMOTE to evaluate CAD severity using SPECT MPI images.

RESULTS

Utilizing a dataset consisting of 254 patients (176 with MVD and 78 with single-vessel disease [SVD]), our model achieved an accuracy rate of 84.31% and area under the receiver operating characteristic curve (AUC) value of 0.8714 in predicting cases of MVD. These results underline the promising potential of our approach in MVD prediction, offering valuable diagnostic insights and the prospect of reducing medical costs.

CONCLUSION

This study emphasizes the feasibility of employing deep learning techniques for predicting MVD based on SPECT MPI images. The integration of Efficient-Net-V2 and DeepSMOTE methods effectively evaluates CAD severity and distinguishes MVD from SVD. Our research presents a practical approach to the early prediction and diagnosis of MVD, ultimately leading to enhanced patient outcomes and reduced healthcare costs.

摘要

背景

冠状动脉疾病(CAD)是一个全球关注的健康问题。传统的单光子发射计算机断层扫描心肌灌注成像(SPECT MPI)是一种评估CAD严重程度的非侵入性方法。然而,它依赖于临床医生的人工分类,这可能导致视觉疲劳和潜在误差。深度学习技术在CAD诊断和预测方面已显示出有前景的结果,能对医学图像进行高效且准确的分析。

方法

在本研究中,我们探索深度学习方法在评估CAD严重程度和识别多支血管疾病(MVD)病例中的应用。我们将高效神经网络V2(EfficientNet-V2)模型与深度合成少数过采样技术(DeepSMOTE)相结合,使用SPECT MPI图像评估CAD严重程度。

结果

利用一个由254名患者组成的数据集(176例患有MVD,78例患有单支血管疾病[SVD]),我们的模型在预测MVD病例时,准确率达到84.31%,受试者工作特征曲线(AUC)下面积值为0.8714。这些结果突显了我们的方法在MVD预测方面的潜在前景,提供了有价值的诊断见解以及降低医疗成本的可能性。

结论

本研究强调了采用深度学习技术基于SPECT MPI图像预测MVD的可行性。高效神经网络V2和深度合成少数过采样技术方法的整合有效地评估了CAD严重程度,并将MVD与SVD区分开来。我们的研究提出了一种对MVD进行早期预测和诊断的实用方法,最终可改善患者预后并降低医疗成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a8/11526402/611e68bf56b3/10.1177_20552076241288430-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验