Suppr超能文献

机器学习预测快速心肌灌注 SPECT 后每支血管的早期冠状动脉血运重建:多中心 REFINE SPECT 注册研究结果。

Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry.

机构信息

Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA.

Department of Nuclear Medicine, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Rd, Taipei, Taiwan.

出版信息

Eur Heart J Cardiovasc Imaging. 2020 May 1;21(5):549-559. doi: 10.1093/ehjci/jez177.

Abstract

AIMS

To optimize per-vessel prediction of early coronary revascularization (ECR) within 90 days after fast single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) using machine learning (ML) and introduce a method for a patient-specific explanation of ML results in a clinical setting.

METHODS AND RESULTS

A total of 1980 patients with suspected coronary artery disease (CAD) underwent stress/rest 99mTc-sestamibi/tetrofosmin MPI with new-generation SPECT scanners were included. All patients had invasive coronary angiography within 6 months after SPECT MPI. ML utilized 18 clinical, 9 stress test, and 28 imaging variables to predict per-vessel and per-patient ECR with 10-fold cross-validation. Area under the receiver operator characteristics curve (AUC) of ML was compared with standard quantitative analysis [total perfusion deficit (TPD)] and expert interpretation. ECR was performed in 958 patients (48%). Per-vessel, the AUC of ECR prediction by ML (AUC 0.79, 95% confidence interval (CI) [0.77, 0.80]) was higher than by regional stress TPD (0.71, [0.70, 0.73]), combined-view stress TPD (AUC 0.71, 95% CI [0.69, 0.72]), or ischaemic TPD (AUC 0.72, 95% CI [0.71, 0.74]), all P < 0.001. Per-patient, the AUC of ECR prediction by ML (AUC 0.81, 95% CI [0.79, 0.83]) was higher than that of stress TPD, combined-view TPD, and ischaemic TPD, all P < 0.001. ML also outperformed nuclear cardiologists' expert interpretation of MPI for the prediction of early revascularization performance. A method to explain ML prediction for an individual patient was also developed.

CONCLUSION

In patients with suspected CAD, the prediction of ECR by ML outperformed automatic MPI quantitation by TPDs (per-vessel and per-patient) or nuclear cardiologists' expert interpretation (per-patient).

摘要

目的

利用机器学习(ML)优化快速单光子发射计算机断层扫描(SPECT)心肌灌注成像(MPI)后 90 天内早期冠状动脉血运重建(ECR)的血管预测,并引入一种在临床环境下对 ML 结果进行个体化解释的方法。

方法和结果

共纳入 1980 例疑似冠心病(CAD)患者,行 99mTc- sestamibi/tetrofosmin SPECT 负荷/静息 MPI 检查,均采用新一代 SPECT 扫描仪。所有患者在 SPECT MPI 后 6 个月内行有创冠状动脉造影。ML 利用 18 项临床、9 项负荷试验和 28 项影像学变量进行血管和患者水平的 ECR 预测,采用 10 倍交叉验证。比较了 ML 的接受者操作特征曲线下面积(AUC)与标准定量分析[总灌注缺损(TPD)]和专家解读的结果。共 958 例患者(48%)行 ECR。ML 预测 ECR 的血管 AUC(AUC 0.79,95%置信区间(CI)[0.77,0.80])高于区域应激 TPD(0.71,[0.70,0.73])、综合视图应激 TPD(AUC 0.71,95% CI [0.69,0.72])或缺血性 TPD(AUC 0.72,95% CI [0.71,0.74]),均 P<0.001。ML 预测 ECR 的患者 AUC(AUC 0.81,95% CI [0.79,0.83])也高于 TPD、综合视图 TPD 和缺血性 TPD 的应激,均 P<0.001。ML 对 ECR 预测的性能也优于核医学专家对 MPI 的解读。还开发了一种解释个体患者 ML 预测的方法。

结论

在疑似 CAD 患者中,ML 预测 ECR 的性能优于 TPD(血管和患者水平)或核医学专家解读(患者水平)的自动 MPI 定量分析。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验