文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

自适应液-固界面通过脂筏组装诱导间充质干细胞的神经元分化。

Adaptive liquid interfaces induce neuronal differentiation of mesenchymal stem cells through lipid raft assembly.

机构信息

School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.

International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.

出版信息

Nat Commun. 2022 Jun 3;13(1):3110. doi: 10.1038/s41467-022-30622-y.


DOI:10.1038/s41467-022-30622-y
PMID:35661107
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9166733/
Abstract

Stem cells and their microenvironment interact cooperatively to dictate their fates. Biomaterials are dynamically remodeled by stem cells, and stem cells sense and translate the changes into cell fate decisions. We have previously reported that adaptive biomaterials composed of fibronectin inserted into protein nanosheets at a liquid interface enhance neuronal differentiation of human mesenchymal stem cells (hMSCs). However, we could not decouple clearly the effect of ligand density from that of fibrillary structure on cellular function and fate. Here we present an adaptive biomaterial based on two-dimensional networks of protein nanofibrils at a liquid-liquid interface. Compared with flat protein nanosheets, this biomaterial enhances neuronal differentiation of hMSCs through a signaling mechanism involving focal adhesion kinase. Lipid raft microdomains in plasma membrane are found to play a central role in which hMSCs rapidly adapt to the dynamic microenvironment at the fluid interface. Our finding has substantial implications for regenerative medicine and tissue engineering.

摘要

干细胞及其微环境相互协作,共同决定其命运。生物材料被干细胞动态重塑,而干细胞感知并将这些变化转化为细胞命运决定。我们之前曾报道过,由插入到液体界面处蛋白质纳米片中的纤连蛋白组成的适应性生物材料增强了人骨髓间充质干细胞(hMSC)的神经元分化。然而,我们无法将配体密度与纤维状结构对细胞功能和命运的影响明确区分开来。在此,我们提出了一种基于液-液界面处二维蛋白质纳米纤维网络的适应性生物材料。与平面蛋白质纳米片相比,这种生物材料通过涉及粘着斑激酶的信号转导机制增强了 hMSC 的神经元分化。发现在质膜中的脂筏微区在其中发挥着核心作用,hMSC 可以快速适应流体界面处的动态微环境。我们的发现对再生医学和组织工程具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edd5/9166733/035dc045ab7a/41467_2022_30622_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edd5/9166733/1eb221d704d7/41467_2022_30622_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edd5/9166733/1af1682a5532/41467_2022_30622_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edd5/9166733/b0a4c69fa3f0/41467_2022_30622_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edd5/9166733/f4f50ada2b9e/41467_2022_30622_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edd5/9166733/035dc045ab7a/41467_2022_30622_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edd5/9166733/1eb221d704d7/41467_2022_30622_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edd5/9166733/1af1682a5532/41467_2022_30622_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edd5/9166733/b0a4c69fa3f0/41467_2022_30622_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edd5/9166733/f4f50ada2b9e/41467_2022_30622_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edd5/9166733/035dc045ab7a/41467_2022_30622_Fig5_HTML.jpg

相似文献

[1]
Adaptive liquid interfaces induce neuronal differentiation of mesenchymal stem cells through lipid raft assembly.

Nat Commun. 2022-6-3

[2]
Manipulating the Dynamic Adaptivity of a Fluid Interface to Maintain the Multipotency of Mesenchymal Stromal Cells.

Adv Healthc Mater. 2023-9

[3]
Adaptive Liquid Interfacially Assembled Protein Nanosheets for Guiding Mesenchymal Stem Cell Fate.

Adv Mater. 2019-12-9

[4]
Tunable Substrate Functionalities Direct Stem Cell Fate toward Electrophysiologically Distinguishable Neuron-like and Glial-like Cells.

ACS Appl Mater Interfaces. 2021-1-13

[5]
The Advancement of Biomaterials in Regulating Stem Cell Fate.

Stem Cell Rev Rep. 2018-2

[6]
Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells.

Acta Biomater. 2018-7-5

[7]
Human mesenchymal stem cell differentiation on self-assembled monolayers presenting different surface chemistries.

Acta Biomater. 2009-7-24

[8]
The Potential Application of Biomaterials in Cardiac Stem Cell Therapy.

Curr Med Chem. 2016

[9]
Guiding mesenchymal stem cell differentiation using mesoporous silica nanoparticle-based films.

Acta Biomater. 2019-7-5

[10]
Characterization of cell signaling, morphology, and differentiation potential of human mesenchymal stem cells based on cell adhesion mechanism.

J Cell Physiol. 2020-10

引用本文的文献

[1]
Potential-Switchable Viscoelasticity of Protein Nanolayers at a Liquid/Liquid Interface.

Langmuir. 2025-7-15

[2]
Assembly and Functionality of 2D Protein Arrays.

Adv Sci (Weinh). 2025-4

[3]
Lateral nanoarchitectonics from nano to life: ongoing challenges in interfacial chemical science.

Chem Sci. 2024-10-28

[4]
Data-driven optimization of the design of ionic liquids as interfacial cell culture fluids.

Sci Technol Adv Mater. 2024-10-21

[5]
Liquid-Liquid and Liquid-Solid Interfacial Nanoarchitectonics.

Molecules. 2024-7-3

[6]
A novel strategy to facilitate uniform epithelial cell maturation using liquid-liquid interfaces.

Sci Rep. 2024-5-29

[7]
Formulate Adaptive Biphasic Scaffold via Sequential Protein-Instructed Peptide Co-Assembly.

Adv Sci (Weinh). 2024-8

[8]
Lipid Rafts: The Maestros of Normal Brain Development.

Biomolecules. 2024-3-18

[9]
2D Materials Nanoarchitectonics for 3D Structures/Functions.

Materials (Basel). 2024-2-17

[10]
Crucial Factors Influencing the Involvement of Odontogenic Exosomes in Dental Pulp Regeneration.

Stem Cell Rev Rep. 2023-11

本文引用的文献

[1]
Controlling the Structure and Function of Protein Thin Films through Amyloid-like Aggregation.

Acc Chem Res. 2021-8-3

[2]
Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics.

Chem Rev. 2021-9-22

[3]
Self-Strengthening Adhesive Force Promotes Cell Mechanotransduction.

Adv Mater. 2020-12

[4]
Effects of extracellular matrix viscoelasticity on cellular behaviour.

Nature. 2020-8-26

[5]
Soft Polymeric Matrix as a Macroscopic Cage for Magnetically Modulating Reversible Nanoscale Ligand Presentation.

Nano Lett. 2020-5-13

[6]
Adaptive Liquid Interfacially Assembled Protein Nanosheets for Guiding Mesenchymal Stem Cell Fate.

Adv Mater. 2019-12-9

[7]
Viewpoint: From Responsive to Adaptive and Interactive Materials and Materials Systems: A Roadmap.

Adv Mater. 2020-5

[8]
Modulating the Mechanical Performance of Macroscale Fibers through Shear-Induced Alignment and Assembly of Protein Nanofibrils.

Small. 2020-3

[9]
Potential-Responsive Surfaces for Manipulation of Cell Adhesion, Release, and Differentiation.

Angew Chem Int Ed Engl. 2019-9-3

[10]
Reconfigurable ferromagnetic liquid droplets.

Science. 2019-7-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索