Jin Shan, Xu Hongming, Dong Yue, Wang Xiaofeng, Hao Xinyu, Qin Fengying, Wang Ranran, Cong Fengyu
Cancer Hospital of Dalian University of Technology, Dalian University of Technology, Shenyang, China.
School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China.
J Appl Clin Med Phys. 2024 Dec;25(12):e14547. doi: 10.1002/acm2.14547. Epub 2024 Oct 6.
In the current clinical diagnostic process, the gold standard for lymph node metastasis (LNM) diagnosis is histopathological examination following surgical lymphadenectomy. Developing a non-invasive and preoperative method for predicting LNM is necessary and holds significant clinical importance.
We develop a ranking attention multiple instance learning (RA-MIL) model that integrates convolutional neural networks (CNNs) and ranking attention pooling to diagnose LNM from T2 MRI. Our RA-MIL model applies the CNNs to derive imaging features from 2D MRI slices and employs ranking attention pooling to create patient-level feature representation for diagnostic classification. Based on the MIL and attention theory, informative regions of top-ranking MRI slices from LNM-positive patients are visualized to enhance the interpretability of automatic LNM prediction. This retrospective study collected 300 female patients with cervical cancer who underwent T2-weighted magnetic resonance imaging (MRI) scanning and histopathological diagnosis from one hospital (289 patients) and one open-source dataset (11 patients).
Our RA-MIL model delivers promising LNM prediction performance, achieving the area under the receiver operating characteristic curve (AUC) of 0.809 on the internal test set and 0.833 on the public dataset. Experiments show significant improvements in LNM status prediction using the proposed RA-MIL model compared with other state-of-the-art (SOTA) comparative deep learning models.
The developed RA-MIL model has the potential to serve as a non-invasive auxiliary tool for preoperative LNM prediction, offering visual interpretability regarding informative MRI slices and regions in LNM-positive patients.
在当前临床诊断过程中,淋巴结转移(LNM)诊断的金标准是手术淋巴结切除术后的组织病理学检查。开发一种用于预测LNM的非侵入性术前方法是必要的,且具有重要的临床意义。
我们开发了一种排序注意力多实例学习(RA-MIL)模型,该模型整合了卷积神经网络(CNN)和排序注意力池化,以从T2加权磁共振成像(MRI)诊断LNM。我们的RA-MIL模型应用CNN从二维MRI切片中提取影像特征,并采用排序注意力池化来创建用于诊断分类的患者水平特征表示。基于多实例学习和注意力理论,对LNM阳性患者排名靠前的MRI切片的信息区域进行可视化,以增强自动LNM预测的可解释性。这项回顾性研究收集了300例接受T2加权磁共振成像(MRI)扫描和组织病理学诊断的宫颈癌女性患者,数据来自一家医院(289例患者)和一个开源数据集(11例患者)。
我们的RA-MIL模型在LNM预测方面表现出良好的性能,在内部测试集上的受试者操作特征曲线下面积(AUC)为0.809,在公共数据集上为0.833。实验表明,与其他最先进(SOTA)的比较深度学习模型相比,使用所提出的RA-MIL模型在LNM状态预测方面有显著改进。
所开发的RA-MIL模型有潜力作为术前LNM预测的非侵入性辅助工具,为LNM阳性患者的信息MRI切片和区域提供视觉可解释性。